DOI QR코드

DOI QR Code

Application of nightlight satellite imagery for assessing flooding potential area in the Mekong river basin

메콩강 홍수위험분석을 위한 나이트라이트 위성영상 적용성 검토

  • Try, Sophal (Department of Construction and Disaster Prevention Engineering, Kyungpook National University) ;
  • Lee, Daeup (Department of Construction and Disaster Prevention Engineering, Kyungpook National University) ;
  • Lee, Giha (Department of Construction and Disaster Prevention Engineering, Kyungpook National University)
  • Received : 2018.03.04
  • Accepted : 2018.03.28
  • Published : 2018.07.31

Abstract

High population density in deltaic settings, especially in Asia, tends to increase and causes coastal flood risk because of lower elevations and significant subsidence. Large flood annually causes numerous deaths and huge economic losses. In this paper, an innovative technology of spatial satellite imagery has been used as tool to analyze the socio-economic flood-related damage in Mekong river basin. The relationship between nightlight intensity and flood damages has been determined for the period of 1992-2013 with a spatial resolution of 30 arc sec ($0.0083^{\circ}$), which is nearly one kilometer at the equator. Flow path distance was calculated to identify the distance of each cell to river network and to examine how nightlight intensity correlate to the area close to and far from river network. Statistical analysis results highlight the significant correlation between nocturnal luminosity intensity and flood-related damages in countries along the Mekong river (i.e., Cambodia, China, Lao PDR, Thailand, and Vietnam). This result reveals that the areas close to the river network correspond to high human distribution and causes huge damage during flooding. The result may provide key information to the region with respect to decisions, attentions, and mitigation strategies.

아시아 지역의 인구증가와 하천주변 및 삼각주 평야 저지대의 인구밀도 집중으로 인해 우기 시 아시아의 많은 지역에서 홍수로 인한 대규모 인명 및 재산 피해가 발생하고 있다. 본 연구에서는 NOAA에서 제공하는 1992년부터 2003년까지의 나이트라이트 위성영상자료를 수집하여 인명 및 재산피해 정보와의 상호 공간분석을 통해 메콩강 유역의 홍수피해에 대한 분석을 실시하였다. 인명 및 재산피해 자료는 EM-DAT에서 제공하는 지역 공간분포자료를 활용하였으며, 메콩강 주하천 격자로 부터 모든 임의 격자의 떨어진 거리를 계산하여 해당 격자에서의 나이트라이트 강도와 인명 및 재산피해와의 상관분석을 수행하였다. 그 결과, 나이트라이트 강도가 클수록 홍수피해가 큰 것으로 분석되었으며, 특히, 하천으로부터 가까운 거리에서 나이트라이트 강도가 높게 나타났다. 이는 높은 나이트라이트 강도를 갖는 격자, 즉 인구밀집도가 상대적으로 높은 격자가 메콩강 하천주변으로 분포되어 있으며, 홍수피해와 양의 상관관계를 갖고 있음을 의미한다. 이와 같이 나이트라이트 위성영상정보는 에너지소비, 재해 등 다양한 공간분석을 통해 사회경제적 영향성 평가를 위한 대리변수로 사용이 가능할 것으로 판단된다.

Keywords

References

  1. Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F. (2013). "GloFAS-global ensemble streamflow forecasting and flood early warning." Hydrology and Earth System Sciences, Vol. 17, No. 3, pp. 1161-1175. doi: 10.5194/hess-17-1161-2013.
  2. Andrewin, A. N., Rodriguez-Llanes, J. M., and Guha-Sapir, D. (2015). "Determinants of the lethality of climate-related disasters in the Caribbean Community (CARICOM): a cross-country analysis." Scientific Reports, Vol. 5. doi: 10.1038/srep11972.
  3. Becker, A., and Grunewald, U. (2003). "Flood risk in central Europe." Science, Vol. 300, No. 5622, p. 1099. doi: 10.1126/science.1083624.
  4. Bennie, J., Davies, T. W., Duffy, J. P., Inger, R., and Gaston, K. J. (2014). "Contrasting trends in light pollution across Europe based on satellite observed night time lights." Scientific Reports, Vol. 4. doi: 10.1038/srep03789.
  5. Ceola, S., Laio, F., and Montanari, A. (2014). "Satellite nighttime lights reveal increasing human exposure to floods worldwide." Geophysical Research Letters, Vol. 41, No. 20, pp. 7184-7190. doi: 10.1002/2014GL061859.
  6. Ceola, S., Laio, F., and Montanari, A. (2015). "Human-impacted waters: New perspectives from global high-resolution monitoring." Water Resources Research, Vol. 51, No. 9, pp. 7064-7079. doi: 10.1002/2015WR017482.
  7. Chand, T. K., Badarinath, K., Elvidge, C., and Tuttle, B. (2009). "Spatial characterization of electrical power consumption patterns over India using temporal DMSP-OLS night-time satellite data." International Journal of Remote Sensing, Vol. 30, No. 3, pp. 647-661. doi: 10.1080/01431160802345685.
  8. Chen, X., and Nordhaus, W. D. (2011). "Using luminosity data as a proxy for economic statistics." Proceedings of the National Academy of Sciences, Vol. 108, No. 21, pp. 8589-8594. doi: 10.1073/pnas.1017031108.
  9. Elvidge, C. D., Baugh, K. E., Kihn, E. A., Kroehl, H. W., and Davis, E. R. (1997). "Mapping city lights with nighttime data from the DMSP operational linescan system." Photogrammetric Engineering and Remote Sensing, Vol. 63, No. 6, pp. 727-734.
  10. Elvidge, C. D., Sutton, P. C., Ghosh, T., Tuttle, B. T., Baugh, K. E., Bhaduri, B., and Bright, E. (2009). "A global poverty map derived from satellite data." Computers and Geosciences, Vol. 35, No. 8, pp. 1652-1660. doi: 10.1016/j.cageo.2009.01.009.
  11. EM-DAT (2016). Emergency Events Database (EM-DAT): The OFDA/ CRED International Disaster Database. Retrieved December 15, 2016. http://http://www.emdat.be.
  12. Getirana, A. C., Bonnet, M. P., Rotunno Filho, O. C., and Mansur, W. J. (2009). "Improving hydrological information acquisition from DEM processing in floodplains." Hydrological Processes, Vol. 23, No. 3, pp. 502-514. doi: 10.1002/hyp.7167.
  13. Guha-Sapir, D., Hoyois, P., and Below, R. (2014). Annual Disaster Statistical Review 2011: the numbers and trends (2012). Centre for Research on the Epidemiology of Disasters (CRED), Institute of Health and Society (1RSS) and Universite catholoque de Louvain: Louvain-la-neuve, Belgium.
  14. Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Florke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., and Schewe, J. (2014). "Global water resources affected by human interventions and climate change." Proceedings of the National Academy of Sciences, Vol. 111, No. 9, pp. 3251-3256. doi: 10.1073/pnas.1222475110.
  15. Jongman, B., Ward, P. J., and Aerts, J. C. (2012). "Global exposure to river and coastal flooding: Long term trends and changes." Global Environmental Change, Vol. 22, No. 4, pp. 823-835. https://doi.org/10.1016/j.gloenvcha.2012.07.004
  16. Kummu, M., and Sarkkula, J. (2008). "Impact of the Mekong river flow alteration on the Tonle Sap flood pulse." AMBIO: A Journal of the Human Environment, Vol. 37, No. 3, pp. 185-192. doi: 10.1579/0044-7447(2008)37[185:IOTMRF]2.0.CO;2.
  17. Kummu, M., De Moel, H., Ward, P. J., and Varis, O. (2011). "How close do we live to water? A global analysis of population distance to freshwater bodies." PLoS One, Vol. 6, No. 6, p. e20578. doi: 10.1371/journal.pone.0020578.
  18. Lehner, B., Verdin, K., and Jarvis, A. (2006). HydroSHEDS technical documentation, version 1.0. World Wildlife Fund US, Washington, DC, pp. 1-27.
  19. Lehner, B., Verdin, K., and Jarvis, A. (2008). "New global hydrography derived from spaceborne elevation data." Eos, Vol. 89, No. 10, pp. 93-94. https://doi.org/10.1029/2008EO100001
  20. Li, L., Hong, Y., Wang, J., Adler, R. F., Policelli, F. S., Habib, S., Irwn, D., Korme, T., and Okello, L. (2009). "Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia basin, Lake Victoria, Africa." Natural Hazards, Vol. 50, No. 1, pp. 109-123. doi: 10.1007/s11069-008-9324-5.
  21. Mitchell, T., Guha-Sapir, D., Hall, J., Lovell, E., Muir-Wood, R., Norris, A., Scott, L., and Wallemacq, P. (2014). Setting, measuring and monitoring targets for reducing disaster risk. Recommendations for Post-2015 International Policy Frameworks. ODI.
  22. MRC (2005). Overview of the Hydrology of the Mekong Basin.
  23. MRC (2009). Annual Mekong Flood Report 2008. Mekong River Commission, Vientiane.
  24. MRC (2010a). Annual Mekong Flood Report 2009. Mekong River Commission, Vientiane.
  25. MRC (2010b). State of the Basin Report 2010. Mekong River Commission, Phnom Penh.
  26. MRC (2011). Planning Atlas of the Lower Mekong River Basin. Mekong River Commission, Vientiane, Laos.
  27. MRC (2014). Annual Mekong Flood Report 2011. Mekong River Commission, Vientiane, Laos.
  28. Nicholls, R. J., Hanson, S., Herweijer, C., Patmore, N., Hallegatte, S., Corfee-Morlot, J., Chateau, J., and Muir-Wood, R. (2008). Ranking port cities with high exposure and vulnerability to climate extremes. doi: 10.1787/011766488208.
  29. NOAA. (2016). Version 4 DMSP-OLS Nighttime Lights Time Series. Retrieved 30 January, 2016, http://nhttp://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
  30. Slater, L. J., Singer, M. B., and Kirchner, J. W. (2015). "Hydrologic versus geomorphic drivers of trends in flood hazard." Geophysical Research Letters, Vol. 42, No. 2, pp. 370-376. doi: 10.1002/2014GL062482.
  31. Vorosmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B. (2000). "Global water resources: vulnerability from climate change and population growth." Science, Vol. 289, No. 5477, pp. 284-288. doi: 10.1126/science.289.5477.284.
  32. WMO (2014). Atlas of mortality and economic losses from weather, climate and water extremes (1970-2012) (Vol. WMO-No.1123): World Meteorological Organization.
  33. Yilmaz, K. K., Adler, R. F., Tian, Y., Hong, Y., and Pierce, H. F. (2010). "Evaluation of a satellite-based global flood monitoring system." International Journal of Remote Sensing, Vol. 31, No. 14, pp. 3763-3782. doi: 10.1080/01431161.2010.483489.