DOI QR코드

DOI QR Code

Finger Printing Based Radio Positioning Scheme for Maritime Safety

수상 안전을 위한 Finger Printing 기반 무선 위치추적 기술

  • Seok, Keun Young (Department of Electronics Engineering and Applied Communications Research Center, Hankuk University of Foreign Studies) ;
  • Ryu, Jong Yeol (Department of Information and Communications Engineering, Gyeongsang National University) ;
  • Lee, Jung Hoon (Department of Electronics Engineering and Applied Communications Research Center, Hankuk University of Foreign Studies)
  • Received : 2018.05.28
  • Accepted : 2018.06.27
  • Published : 2018.07.31

Abstract

In this paper, we propose an efficient location tracking scheme using wireless signals for various situations in marine environment that requires location information for many reasons such as lifesaving, accident prevention, and facility management. Our proposed location tracking scheme not only monitors user's location, but also minimizes the risk under the user's limited battery power budget. The position of a user can be obtained at base stations from the strengths of the received signals from the user. In this case, it may require to prevent the user from getting out of the predetermined safe area. For each location in the safe area, we define a risk function, which is influenced by many factors such as location accuracy, depth, flow rate, and geometry. Our proposed scheme is based on finger printing technique and aims at minimizing the average risk of each user in the safe area.

본 논문은 인명구조, 사고방지, 시설관리 등 수상환경에서 위치정보가 필요한 상황에서 무선 신호를 활용한 효율적인 위치 추적 기술을 제안한다. 제안하는 기법은 유저의 배터리 파워 소모량을 고려하여 제한된 전력 내에서 위험도를 최소화한다. 수상의 일정 반경 내에서 유저의 송수신 신호 세기를 이용하여 유저의 위치를 알 수 있는데, 이 때 유저가 일정 반경을 벗어나는 것을 사전에 방지할 필요가 있다. 이 논문에서는 먼저 유저가 일정 반경을 벗어나는 것을 방지하기 위해 위험도 함수를 정의한다. 위험도 함수는 위치정확도, 수심, 유속 등 수상 환경 위험에 관련된 다양한 요인들을 고려한다. 본 논문은 finger printing 기법을 이용한 효율적인 무선 측위 기술을 활용하여 일정 지역 내에 위치한 유저의 평균 위험도를 최소화하는 것을 목표로 하고 있다.

Keywords

References

  1. N. M. Drawil, H. M. Amar, and O. A. Basir, "GPS localization accuracy classification: A context-based approach," IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 1, pp. 262-273, Mar. 2013. https://doi.org/10.1109/TITS.2012.2213815
  2. K. Kasantikul, C. Xiu, D. Yang, and M. Yang, "An enhanced technique for indoor navigation system based on WiFi-RSSI," in Proceeding of the 7th International Conference on Ubiquitous and Future Networks, Sapporo, pp. 513-518. 2015.
  3. K. J. Baik, S. J. Lee, and B. J. Jang, "AoA-based local positioning system using a time-modulated array," Journal of Electromagnetic Engineering And Science, vol. 17, no. 4, pp. 181-185, Oct. 2017. https://doi.org/10.26866/jees.2017.17.4.181
  4. S. R. Go, "Effective ToA-based indoor localization method considering accuracy in wireless sensor networks," The Journal of Korean Institute of Communications and Information Sciences, vol. 41, no. 6, pp. 640-651, Jun. 2016. https://doi.org/10.7840/kics.2016.41.6.640
  5. S. R. Go, "An effective ToA-based localization method with adaptive bias computation," Journal of the Korean Institute of Electrical and Electronic Material Engineers, vol. 20, no. 1, pp. 1-8, Mar. 2016. https://doi.org/10.4313/JKEM.2007.20.1.001
  6. D. H. Choi, Y. J. Go, J. H. Lee, T. H. Na, and J. S. Choi, "Study of effectiveness of atmospheric environment on TDoA position estimation," in Proceedings of the Korean Society for Noise and Vibration Engineering Conference fall, Pyeongchang, pp. 150-154, 2015.
  7. T. K. An, C. H. Ahn, M. W. Nam, J. H. Park, and Y. S. Lee, "A study on improving accuracy of subway location tracking using WiFi fingerprinting," Journal of the Korea Academia-Industrial cooperation Society, vol. 17, no. 1, pp. 1-8, Jan. 2016. https://doi.org/10.5762/KAIS.2016.17.1.1
  8. S. He and S. H. G. Chan, "Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons," IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 466-490, Jan. 2016. https://doi.org/10.1109/COMST.2015.2464084
  9. Sang-Young Lee, "OpenCV-based Object Tracking System," Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol.6, no.5, pp. 29-37, May. 2016.
  10. Geum-boon Lee, "A Fast Moving Object Tracking Method by the Combination of Covariance Matrix and Kalman Filter Algorithm," Journal of the Korea Institute of Information and Communication Engineering, vol.19, no.6, pp. 1477-1484, Jun. 2015. https://doi.org/10.6109/jkiice.2015.19.6.1477