• Title/Summary/Keyword: Radio positioning

Search Result 270, Processing Time 0.024 seconds

Development of 3-Dimensional Position/Attitude Determination Radio-navigation System with FLAOA and TOA Measurements

  • Jeon, Jong-Hwa;Lim, Jeong-Min;Yoo, Sang-Hoon;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.2
    • /
    • pp.61-71
    • /
    • 2018
  • Existing radio positioning systems have a drawback that the attitude of user's tag is difficult to be determined. Although forward link angle of arrival (FLAOA) technology that uses measurements of array antenna arranged in a tag among the angle of arrival (AOA) technologies can estimate attitude and positioning of tags, it cannot extend the estimated results into three-dimensional (3D) results due to complex non-linear model displayed because of the effects of 3D positioning and attitude in tags. This paper proposed a radio navigation technique that determines 3D attitude and positioning via FLAOA / time of arrival (TOA) integration. According to the order of determining attitude and positioning, two integration techniques were proposed. To analyze the performance of the proposed technique, MATLAB-based simulations were used to verify the performance. The simulation results showed that the first proposed method, TOA-FLAOA integrated technique, showed about 0.15 m of positioning error, and $2-3^{\circ}$ of attitude error performances regardless of the positioning space size whereas the second method, differenced FLAOA-TOA integrated technique, revealed a problem that a positioning error became larger as the size of the positioning space became larger.

Improved Ultrasonic Satellite System for the Localization of Mobile Robots (이동로봇의 위치측정을 위한 개선된 초음파 위성 시스템)

  • Kim, Su-Yong;Yoon, Kang-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1240-1247
    • /
    • 2011
  • The localization of mobile robot in environment is a major concern in mobile robot navigation. So, many kinds of localization techniques have been researched for several years. Among them, the positioning system using ultrasound has received attention. Most of these ultrasonic positioning systems to synchronize the transmitters and receivers are used for RF (Radio Frequencies). However, due to the use of RF, the interference problems can not be avoided and the performance of radio frequencies directly affects the positioning performance. So we proposed the ultrasonic positioning system without synchronizing RF. The proposed system is based on existing USAT (Ultrasonic Satellite System) adopted infrastructure transmitting type, and consists of transmitter and receiver synchronizing modules instead of the radio frequency transmitters and receiver. The ultrasonic transmitters and receivers are synchronized individually by the transmitter and receiver synchronizing modules. In order to calculate the bias between the transmitter and receiver synchronizing modules, new positioning algorithm similar to GPS was proposed. The positioning performance of the improved USAT without synchronizing RF and the validity of the proposed positioning algorithm are verified and evaluated by experiments.

A Preliminary Implementation Study of TDMA-based Positioning System Utilizing USRP and GNU Radio

  • Yoo, Won Jae;Choi, Kwang Ho;Lim, JoonHoo;Kim, La Woo;So, Hyoungmin;Lee, Hyung Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.95-104
    • /
    • 2017
  • Positioning signals transmitted by Global Positioning System (GPS) satellites located at approximately 20,000 km height is very weak. For the reason, GPS signals are vulnerable to intentional jamming and unintentional disturbance. Recently, the number of jamming has been increased significantly all over the world. For the applications where continuous and reliable positioning is required when GPS jammers are activated, other positioning systems are strongly required. In this work, a set of Time Division Multiple Access (TDMA)-based transmitters and receivers utilizing Universal Software Radio Peripheral (USRP) and GNU Radio are designed and implemented. To eliminate the undesirable effects of GPS jamming, a frequency band which does not overlap L band is utilized. To demonstrate the accuracy of the proposed method, an experiment was performed.

Radio Propagation Model and Spatial Correlation Method-based Efficient Database Construction for Positioning Fingerprints (위치추정 전자지문기법을 위한 전파전달 모델 및 공간상관기법 기반의 효율적인 데이터베이스 생성)

  • Cho, Seong Yun;Park, Joon Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.774-781
    • /
    • 2014
  • This paper presents a fingerprint database construction method for WLAN RSSI (Received Signal Strength Indicator)-based indoor positioning. When RSSI is used for indoor positioning, the fingerprint method can achieve more accurate positioning than trilateration and centroid methods. However, a FD (Fingerprint Database) must be constructed before positioning. This step is a very laborious process. To reduce the drawbacks of the fingerprint method, a radio propagation model-based FD construction method is presented. In this method, an FD can be constructed by a simulator. Experimental results show that the constructed FD-based positioning has a 3.17m (CEP) error. In this paper, a spatial correlation method is presented to estimate the NLOS(Non-Line of Sight) error included in the FD constructed by a simulator. As a result, the NLOS error of the FD is reduced and the performance of the error compensated FD-based positioning is improved. The experimental results show that the enhanced FD-based positioning has a 2.58m (CEP) error that is a reasonable performance for indoor LBS (Location Based Service).

Improvement of Wi-Fi Location Accuracy Using Measurement Node-Filtering Algorithm

  • Do, Van An;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • In this paper, we propose a new algorithm to improve the accuracy of the Wi-Fi access point (AP) positioning technique. The proposed algorithm based on evaluating the trustworthiness of the signal strength quality of each measurement node is superior to other existing AP positioning algorithms, such as the centroid, weighted centroid, multilateration, and radio distance ratio methods, owing to advantages such as reduction of distance errors during positioning, reduction of complexity, and ease of implementation. To validate the performance of the proposed algorithm, we conducted experiments in a complex indoor environment with multiple walls and obstacles, multiple office rooms, corridors, and lobby, and measured the corresponding AP signal strength value at several specific points based on their coordinates. Using the proposed algorithm, we can obtain more accurate positioning results of the APs for use in research or industrial applications, such as finding rogue APs, creating radio maps, or estimating the radio frequency propagation properties in an area.

Design of Variable Grid Map based on Wi-Fi Signal for Location Search (위치탐색을 위한 Wi-Fi 신호 기반 가변 Grid Map 설계)

  • Kim, Dong-Hyeon;Yi, Hyoun-sup;Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.59-61
    • /
    • 2022
  • Among indoor positioning system techniques using wireless APs, fingerprint techniques collect Mac information and reception strength of APs before performing positioning, build a radio map, and compare it with AP information collected during positioning. However, the existing Radio Map construction method has a problem in that signal interference occurs due to collisions of numerous APs depending on the indoor environment, and the signal strength search result is not always constant. Therefore, this paper compares the existing fixed radio map construction method and the variable radio map construction technique that actively analyzes and constructs the measurement area itself according to signal strength.

  • PDF

A Design and Implementation of Positioning System Using Characteristics of Outdoor Environments and Weak Signal Strength (저준위 신호세기와 실외 환경 특징을 활용한 측위 시스템 설계 및 구현)

  • Lee, Hyoun-Sup;Kim, Jin-Deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2411-2418
    • /
    • 2011
  • The most typically utilized positioning method in the existing indoor WPS that is a positioning method utilizing distributed wireless network is the finger print. Its positioning is carried out by calculating the difference between the AP information map and WiFi AP signal collected. However, there are problems like low accuracy and high cost when the existing method and the radio map formation are applied to outdoors. In this paper, the characteristics of the existing WPS are surveyed and their problems are examined. In addition, we propose a new WPS using weak signal and a method to construct radio map in order to solve the above problems. And then, the results of experimental test will be analyzed.

A Novel Technique for Human Traffic based Radio Map Updating in Wi-Fi Indoor Positioning Systems

  • Mo, Yun;Zhang, Zhongzhao;Lu, Yang;Agha, Gul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1881-1903
    • /
    • 2015
  • With the fast-developing of mobile terminals, positioning techniques based on fingerprinting method draws attention from many researchers even world famous companies. To conquer some shortcomings of the existing fingerprinting systems and further improve its performance, we propose a radio map building and updating technique, which is able to customize the spatial and temporal dependency of radio maps. The method includes indoor propagation and penetration modeling and the analysis of human traffic. Based on the combination of Ray-Tracing Algorithm, Finite-Different Time-Domain and Rough Set Theory, the approach of indoor propagation modeling accurately represents the spatial dependency of the radio map. In terms of temporal dependency, we specifically study the factor of moving people in the interest area. With measurement and statistics, the factor of human traffic is introduced as the temporal updating component. We improve our existing indoor positioning system with the proposed building and updating method, and compare the localization accuracy. The results show that the enhanced system can conquer the influence caused by moving people, and maintain the confidence probability stable during week, which enhance the actual availability and robustness of fingerprinting-based indoor positioning system.

Modeling & Simulation Software Design for Coverage Analysis of Multiple Radio Positioning Integration System

  • Koo, Moonsuk;Kim, YoungJoon;So, Hyoungmin;Oh, Sang Heon;Kim, Seong-Cheol;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.47-57
    • /
    • 2016
  • Since the Global Navigation Satellite System (GNSS) may not provide navigation information due to external interferences, many countries have plans to prepare a backup system for this situation. One of the possible GNSS backup systems is a multiple radio positioning integration system in combination with the terrestrial radio navigation system. Before constructing such a GNSS backup system, M&S software is needed to analyze if the system satisfies the performance the required navigation performance. This study presents requirements of M&S software for coverage analysis of the navigation system, and proposes an M&S software design scheme on the basis of the requirements. The M&S software is implemented, and coverage analysis is performed to verify the validity of the proposed design scheme.

A Study on Improving Indoor Positioning Accuracy Using Map Matching Algorithm (맵 매칭 알고리즘을 이용한 실내 위치 추정 정확도 개선에 대한 연구)

  • Kwangjae Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.50-55
    • /
    • 2023
  • Due to the unavailability of global positioning system (GPS) indoors, various indoor pedestrian positioning methods have been designed to estimate the position of the user using received signal strength (RSS) measurements from radio beacons, such as wireless fidelity (WiFi) access points and Bluetooth low energy (BLE) beacons. In indoor environments, radio-frequency (RF) signals are unpredictable and change over space and time because of multipath associated with reflection and refraction, shadow fading caused by obstacles, and interference among different devices using the same frequencies. Therefore, the outliers in the positional information obtained from the indoor positioning method based on RSS measurements occur often. For this reason, the performance of the positioning method can be degraded by the characteristics of the RF signal. To resolve this issue, a map-matching (MM) algorithm based on maximum probability (MP) estimation is applied to the indoor positioning method in this study. The MM algorithm locates the aberrant position of the user estimated by the positioning method within the limits of the adjacent pedestrian passages. Empirical experiments show that the positioning method can achieve higher positioning accuracy by leveraging the MM algorithm.

  • PDF