• Title/Summary/Keyword: blue light

Search Result 1,794, Processing Time 0.034 seconds

A Study on Blue Light Blocking Performance and Prescription for Blue Light Blocking Lens (청광차단렌즈의 청광차단성능과 처방에 관한 고찰)

  • Yu, Young Guk;Choi, Eun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.3
    • /
    • pp.297-304
    • /
    • 2013
  • Purpose: To investigate blue light rejection and the percentage of blue light in the visible light of blue light blocking lens according to light source, and to study prescriptions for blue light blocking lens Methods: UV-VIS spectrophotometer was used for blue light rejection and the percentage of blue light in the visible light according to light source, and the percentage of blue light in solar light was used to evaluate the prescription for blue light blocking lens. Results: The blue light rejection and the percentage of blue light in the visible light of each lens were depending on light sources. Through the way to compare the percentages of blue light in the visible light passing through the lens with that in solar light, blue light blocking lenses suitable to each light source could been selected. Conclusions: In the prescription for blue light blocking lens, inquiry for user's display must be preceded. And then the percentages of blue light in the visible light passing through the lens based on that in solar light may be useful as a method of evaluating the prescription for blue light blocking lens.

Effect of Light Quality on the Photorespiration in Pisum sativum L. (완두에서 광호흡에 미치는 광질의 영향)

  • 이순희
    • Journal of Plant Biology
    • /
    • v.33 no.3
    • /
    • pp.203-210
    • /
    • 1990
  • Effects of blue and red light on photorespiration in the leaf disks of pea were studied. The rate of total 14CO2 fixation was more or less higher under red light than blue light irradiation of the same quantum (94.8 $\mu$Em-2.S-1/mV). The release of 14CO2 by photorespiration was more stimulated under blue than red light. Among the photorespiratory intermediates, 14C was more incorporated ito serine under blue light than red light. However, 14C was more incorporated into glycine under red light than blue light. The incorporation of 14C into glycolate was very low under both light qualities, but higher under red light than blue light. Among the enzymes related to photorespiration, only glycolate oxidase was activated and/or synthesized by blue light irradiation. Moreover, more 14C2 was released from glycoate-1-14C under blue light than red light irradiation, but 14C2 release from glyoxylate-1-14C and glycine-1-14C showed no difference by the either light qualities. These results suggest that blue light is more effective in the photorespiratory CO2 evolution than red light. The reason is considered that glycolate is easily metabolized under blue light due to the stimulation of the glycolate oxidase activity.

  • PDF

Radiation and Underwater Transmission Characteristics of a High-luminance Light-emitting Diode as the Light Source for Fishing Lamps (집어등 광원으로서 고휘도 발광 다이오우드의 방사 및 수중투과 특성)

  • Choi, Sok-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.6
    • /
    • pp.480-486
    • /
    • 2006
  • The radiation characteristics of a high-luminance light-emitting diode (LED) light source were studied to evaluate its potential as an energy-saving light source for fishing lamps. The angle of the LED light source with 50% illuminance was $8-15^{\circ}$, and it had strong directional characteristics. The wavelengths at which the radiance and irradiance were maxima were 709, 613, 473, 501, 525, and 465 nm for red, orange, blue, peacock blue, green, and white light, respectively. The underwater transmission characteristics of the LED light source were superior in the order blue, white, peacock blue, and green in optical water type I: blue, peacock blue, white, and green in optical water type II; and blue, peacock blue, green, and white in optical water type III. Setting the underwater transmission characteristics of the LED light source in optical water type I at 100%, the transmission of water types II and III decreased to 67 and 17%, respectively. Based on the underwater transmission characteristics calculated in optical water types I-III, the blue and peacock blue LED light sources can be used as an energy-saving light source for fishing lamps.

Blue light Exposure Control System Using Sensor Modules

  • Lim, Myung-Jae;Jung, Dong-Kun;Kim, Kyu-Dong;Kwon, Young-Man
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.315-319
    • /
    • 2021
  • Recent impact of 4th industrial revolution is increasing usage of IoT technology along with smartphones and tablet PC. However blue light emitted from electronic devices such as smartphones and tablet PC causes detrimental change to human bodies. As the controversy over the harmfulness of blue light became known through the media and various communities, related markets were formed, and various blocking films, software, and vision protection monitors were released. In this paper focuses on utilizing IoT technology to protect human organizations from blue light. It presents anti-blue light system which prevents excessive exposure to blue light through Arduino module such as ultrasound, piezo buzzer and blue light measurement module.

Evaluation of Blue-light Blocking Ratio and Luminous Transmittance of Blue-light Blocking Lens based on International Standard (국제표준에 의거한 청색광차단렌즈의 청색광차단율 및 시감투과율 평가)

  • Kim, Chang-Jin;Choi, Sung Wook;Yang, Seok Jun;Oh, Sang-Young;Choi, Eun Jung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.2
    • /
    • pp.135-143
    • /
    • 2014
  • Purpose: To evaluate the blue-light blocking ratio and luminous transmittance of blue-light blocking lenses using the blue-light hazard function as specified in international standard. Methods: In order to calculate the blue-light blocking ratio and luminous transmittance for a total of 41 blue-light blocking lenses from 8 manufacturers, UV-Vis spectrophotometer was used for measuring the spectral transmittance of wavelengths from 380 to 780 nm. Blue-light blocking ratio was calculated using blue-light hazard function as specified in ANSI Z80.3:2010 and ISO 13666(or Korean Standard KS B ISO 13666:2004). Results: The range of the blue-light blocking ratio was from 9.3 to 96.8%, the range of the transmittance from 53.5 to 92.7%, and the range of the luminous transmittance from 58.0% to 98.1%. In general the blue-light blocking lens prepared by coating tended to have a higher luminous transmittance, while those prepared by tinting a higher blue-light blocking ratio. Conclusions: The behavior of the spectral distribution of lenses showed the possibility of the performance improvement in the blue-light blocking lenses. Manufactures need to acquire their own technology that can evaluate the performance of blue-light blocking lens based in international standard.

Effects of Sources and Quality of LED Light on Response of Lycium chinense of Photosynthetic Rate, Transpiration Rate, and Water Use Efficiency in the Smart Farm

  • Lee, Seungyeon;Hong, Yongsik;Lee, Eungpill;Han, Youngsub;Kim, Euijoo;Park, Jaehoon;Lee, Sooin;Jung, Youngho;You, Younghan
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.171-177
    • /
    • 2019
  • Smart farm is a breakthrough technology that can maximize crop productivity and economy through efficient utilization of space regardless of external environmental factors. This study was conducted to investigate the optimal growth and physiological conditions of Chinese matrimony vine (Lycium chinense) with LED light sources in a smart farm. The light source was composed of red+blue and red+blue+white mixed light using a LED system. In the red+blue mixed light, red and blue colored LEDs were mixed at ratios of 1:1, 2:1, 5:1, and 10:1, with duty ratios varied to 100%, 99%, and 97%. The experimental results showed that the photosynthetic rate according to the types of light sources did not show statistically significant differences. Meanwhile, the photosynthetic rate according to the mixed ratio of the red and the blue light was highest with the red light and blue LED ratio of 1:1 while the water use efficiency was highest with the red and blue LED ratio of 2:1. The photosynthetic rate according to duty ratio was highest with the duty ratio of 99% under the mixed light condition of red+blue+white whereas the water use efficiency was highest with the duty ratio of 97% under the mixed light of red+blue LED. The results indicate that the light source and light quality for the optimal growth of Lycium chinense in the smart farm using the LED system are the mixed light of red+blue (1:1) and the duty ratio of 97%.

A Study on Factors Affecting the Effect of Blue Light Blocking in Sunscreen (자외선 차단제품에서 블루라이트 차단 효과에 영향을 주는 인자에 관한 연구)

  • Park, Soo Jin;Kwak, Byeong Mun;Lee, Mi Gi;Bin, Bum Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.383-390
    • /
    • 2020
  • Blue light is a blue-based light existing at a wavelength between 380 and 450 nm, and it has been reported that it induces active oxygen and causes aging, and accordingly, interest in the blue light blocking effect is increasing. In this study, the effects of the polarity of oil, viscosity of the formulation, type of emulsifier, emulsified particles, and inorganic UV blocking agents on the blue light blocking effect in UV blocking products were investigated. As a result, it was confirmed that the blue light blocking rate increased as the polarity of the oil became similar to that of the organic UV blocker, and the higher the viscosity of the formulation, the higher the blue light blocking rate. The types of emulsifiers and emulsified particles had little effect on the blue light blocking effect, and the presence of inorganic UV blocking agents was found to be one of the factors that greatly influenced the blue light blocking rate. These results can effectively increase the efficiency of blocking blue light, and may be used in the development of blue light blocking products and formulation research in the future.

Comparison of blue light, visible light and infrared light transmittance difference of shading Goggles (청색광, 가시광선 및 적외선이 차광보안경에 따라 투과되는 투과율 차이 비교)

  • Jung, In-Ho;Lee, Sang-Deok;Lee, Sook-Jeong
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.65-71
    • /
    • 2020
  • Purpose: To know the transmittance of light when wearing shading goggles and to protect eyes from blue light emitted from dental scanner when using CAD/CAM works or inducing polymerization reactions of dental resin with curing unit and infrared light occurred when melting Dental precious metal and non-precious metal alloys. Methods: By measuring and comparing the average transmittances of blue light, visible light and infrared ight by using UV-Vis Spectrophotometer analysis measuring instrument, I compared 3 GREEN Color Goggles worn when casting Dental precious metal and non-precious metal alloys, and compared each of YELLOW, ORANGE Color Goggles worn when using Dental CAD/CAM scanners and Light Curing(LED) the Dental resin. Results: In blue light range, YELLOW Color Goggles are more effective than ORANGE Color Goggles. In infrared light range, No.12 Goggles are more effective than No.10 and No.11 Goggles. Conclusion: When wearing blue light shading goggles to avoid harmful blue light occurred in using dental scanner and curing light, and when wearing infrared light shading goggles to avoid harmful infrared light during casting, to avoid the Side Effects like transmittance rate of blue light and infrared light goggles becomes too high to block appropriate amount of harmful light or too low that causing lower image clarity.

Effect of Light Quality (Red, Blue) on the Major Components of Hot Pepper Fruit (신미종(辛味種) 고추의 주요(主要) 성분(成分)의 함량(含量)에 미치는 광질(光質) (Red, Blue)의 영향(影響))

  • Kim, Kwang-Soo;Roh, Seung-Moon;Park, Jyung-Rewng
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.162-165
    • /
    • 1979
  • In order to study the red-coloring effects of hot pepper fruit by light treatment during after-ripening period, 'Karak Geumjang No. 2 green hot pepper fruits, Capsicum annuum L., after 30 to 35 days from flowering were harvested and white, red and blue light treatments at the energy level of $40\;{\mu}watt/cm^2/sec$ were given at $25^{\circ}C$. When compared with white light, total chlorophyll content was strikingly decreased by blue light treatment and no difference in the chlorophyll contents between red and white light was observed. The chlorophyll a and b showed a similar decreasing patterns as shown in the case of total chlorophyll. Total carotenoid content was higher in the blue light treatment by 31% than the white light. However, red light decreased the carotenoid condent as compared to the white light treatment. But ${\beta}-carotene$ was not changed by red light as compared to white light. Blue light treatment increased ${\beta}-carotene$ content (0.71 mg%-f.w.) as compared to white light treatment (0.56 mg%-f.w.). Therefore, blue light treatment increased red-coloring responses of hot pepper fruit during after-ripening period. The capsaicin content was slightly increased by blue light and no red light influence was observed.

  • PDF

Blue light signaling in stomatal guard cells

  • Shimazaki, Ken-ichiro;Michio Doi;Toshinori Kinoshita
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.86-89
    • /
    • 2002
  • Blue light activates proton pump, and creates electrical gradient across the plasma membrane and drives $K^{+}$ uptake in stomatal guard cells. In this presentation, we provide evidence for regulatory mechanisms of the pump and the identification of blue light receptor. The pump is shown to be the plasma membrane H$^{+}$- ATPase and is activated through phosphorylation of the C-terminus. Phosphorylation occurred and 14-3-3 protein bound to the phosphorylation site. The binding of 14-3-3 protein was required for the H$^{+}$-ATPase activation. We also found that phot1 phot2 double mutant does not respond to blue light but other mutants respond to blue light by stomatal opening. However, all these mutants are capable of stomatal opening in the presence of fusicoccin, an activator of the H$^{+}$-ATPase. These results suggest that both photl and phot2 act as blue light receptors in guard cells.d cells.

  • PDF