DOI QR코드

DOI QR Code

A review of feedback field-effect transistors: operation mechanism and their applications

피드백 전계효과 트랜지스터에 대한 리뷰: 동작 메커니즘과 적용 분야

  • Kim, Minsuk (Dept. of Electrical Engineering, Korea University) ;
  • Lee, Kyungsoo (Dept. of Electrical Engineering, Korea University) ;
  • Kim, Sangsig (Dept. of Electrical Engineering, Korea University)
  • Received : 2018.03.08
  • Accepted : 2018.05.29
  • Published : 2018.06.30

Abstract

Since feedback field-effect transistors (FBFETs) have ideal switching characteristics resulting from feedback phenomenon caused by electrons and holes in the channel region, the researches about FBFET devices have been proposed and demonstrated worldwide recently. The device operated with novel principle can operate as a switching electronic device. Besides, because the hysteresis characteristics of the device by accumulated electrons and holes in channel region can be also utilized for memory applications, its application range is wide. In this paper, we cover various device structures of FBFET proposed until now and their operation mechanism, and then look into their applicable fields.

피드백 전계효과 트랜지스터는 채널 내부의 전자와 정공의 의해 발생하는 피드백 현상으로 이상적인 스위칭 특성을 갖기 때문에 최근 세계적으로 많은 연구가 진행되고 있다. 이 새로운 동작원리를 가지는 소자는 초저전력 스위칭 전자소자로 동작이 가능할 뿐만 아니라 채널 내부에 축적된 전자와 정공에 의한 히스테리시스 특성으로 메모리 소자로도 동작 가능하여 그 활용 범위가 넓다. 본 논문에서는 지금까지 제안된 다양한 구조의 피드백 전계효과 트랜지스터와 그 동작 메커니즘에 관해 확인하고 적용 가능 분야에 대해서 살펴본다.

Keywords

References

  1. Thompson, Scott E., and Srivatsan Parthasarathy. "Moore's law: the future of Si microelectronics," Materials today, vol. 9, no. 6 pp. 20-25, 2006. DOI:10.1016/S1369-7021(06)71539-5
  2. Sakurai Takayasu, "Perspectives of Low-Power VLSI," IEICE Transactions on Electronics, vol. E87-C, no. 4, pp. 429-436, 2004.
  3. Jaesung Jo, Changhwan Shin. "Study of Temperature Effects on Negative Capacitance Field-Effect Transistor." IEEK (2014): 70-72.
  4. Jae Hyun Park, et al. "Effect of Random Dopant Fluctuation Depending on the Ion Implantation for the Metal-Oxide-Semiconductor Field Effect Transistor," j.inst.Korean.electr.electron.eng, vol,21.no.1, (2017). DOI: 10.7471/ikeee.2017.21.1.96
  5. Ionescu, Adrian M., and Heike Riel. "Tunnel field-effect transistors as energy-efficient electronic switches," nature, vol. 479, no. 7373, pp. 329-337, 2011. DOI:10.1038/nature10679
  6. Choi, Woo Young, et al. "Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec," IEEE Electron Device Letters vol. 28, no. 8, pp. 743-745, 2007. DOI:10.1109/LED.2007.901273
  7. Kim, Minsuk, et al. "Subthreshold swing characteristics of nanowire tunneling FETs with variation in gate coverage and channel diameter," Current Applied Physics vol. 15, no.7, pp.780-783, 2015. DOI:10.1016/j.cap.2015.04.024
  8. Gopalakrishnan, Kailash, Peter B. Griffin, and James D. Plummer. "Impact ionization MOS (I-MOS)-Part I: device and circuit simulations," IEEE Transactions on electron devices, vol. 52, no. 1, pp. 69-76, 2005. DOI:10.1109/TED.2004.841344
  9. Padilla, Alvaro, et al. "Feedback FET: A novel transistor exhibiting steep switching behavior at low bias voltages," Electron Devices Meeting, 2008. IEDM 2008. IEEE International. IEEE, 2008. DOI:10.1109/IEDM.2008.4796643
  10. Wan, Jing, et al. "A systematic study of the sharp-switching Z 2-FET device: from mechanism to modeling and compact memory applications," Solid-State Electronics, vol. 90, pp. 2-11, 2013. DOI:10.1016/j.sse.2013.02.060
  11. Kim, Minsuk, et al. "Steep switching characteristics of single-gated feedback field-effect transistors," Nanotechnology, vol. 28, no. 5, pp. 055205-1-055205-8, 2017. DOI: 10.1088/1361-6528/28/5/055205
  12. Jeon, Youngin, et al. "Switching characteristics of nanowire feedback field-effect transistors with nanocrystal charge spacers on plastic substrates," ACS nano, vol. 8, no. 4, pp. 3781-3787, 2014. DOI:10.1021/nn500494a
  13. Jeon, Youngin, et al. "Steep subthreshold swing n-and p-channel operation of bendable feedback field-effect transistors with p+-i-n+ nanowires by dual-top-gate voltage modulation," Nano letters, vol. 15, no. 8, pp. 4905-4913, 2015. DOI:10.1021/acs.nanolett.5b00606
  14. Chen, Wei-Chen , and Lue, Hang-Ting. "A novel supersteep subthreshold slope dual-channel FET utilizing a gate-controlled thyristor mode-induced positive feedback current," IEEE Transactions on electron devices vol. 64, no. 3, pp. 1336-1342, 2017. DOI:10.1109/TED.2017.2656903
  15. Cristoloveanu, Sorin et al. "A review of the Z2-FET 1T-DRAM memory: Operation mechanisms and key parameters," Solid-State Electronics, in press, 2017. DOI:10.1016/j.sse.2017.11.012
  16. El Dirani, H., et al. "Competitive 1T-DRAM in 28 nm FDSOI technology for low-power embedded memory," SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2016 IEEE. IEEE, 2016. DOI:10.1109/S3S.2016.7804402
  17. Choi, Nag yong et al. "Design consideration of diode-type NAND flash memory cell string having super-steep switching slope," IEEE Journal of the electron devices society vol. 4, no. 5, pp. 328-334, 2016. DOI:10.1109/JEDS.2016.2593792
  18. Joe, Sung-Min et al. "Diode-type NAND flash memory cell string having super-steep switching slope based on positive feedback," IEEE Transactions on electron devices vol. 63, no. 4, pp. 1533-1538, 2016. DOI:10.1109/TED.2016.2533019