DOI QR코드

DOI QR Code

Comparative study on physicochemical properties of cherry tomato (Solanum lycopersicum var. cerasiforme) prepared using hot-air and combined drying

열풍건조와 복합건조로 제조한 방울토마토(Solanum lycopersicum var. cerasiforme)의 이화학특성에 관한 비교연구

  • Kang, Eun-jung (Department of Food science and Biotechnology, Kyonggi University) ;
  • Park, Ye-ju (Department of Food science and Biotechnology, Kyonggi University) ;
  • Park, Seong-su (Department of Food science and Biotechnology, Kyonggi University) ;
  • Lee, Jae-kwon (Department of Food science and Biotechnology, Kyonggi University)
  • 강은정 (경기대학교 식품생물공학과) ;
  • 박예주 (경기대학교 식품생물공학과) ;
  • 박성수 (경기대학교 식품생물공학과) ;
  • 이재권 (경기대학교 식품생물공학과)
  • Received : 2018.04.17
  • Accepted : 2018.06.03
  • Published : 2018.06.30

Abstract

Effects of different drying processes, such as hot air drying (HA), superheated steam with hot air drying (SHS/HA), and superheated steam with far infrared radiation (SHS/FIR), on the properties of cherry tomatoes (Solanum lycopersicum var. cerasiforme) were studied. Characteristics of dried cherry tomatoes were determined by examining the water content, internal microstructure, and rehydration capacity under different drying processes. Moreover, ascorbic acid (AA) and lycopene levels were also measured to evaluate thermal damage caused by drying. Cherry tomatoes dried using both SHS/HA and SHS/FIR had water content and water activity similar to those of intermediate moisture food, indicating partial dehydration after combined drying processes. Although AA and lycopene levels decreased drastically after drying, tomatoes dried using SHS/FIR showed the lowest losses of AA and lycopene among samples. Cherry tomatoes dried using SHS/FIR showed a less compact internal cell structure than that of cherry tomatoes dried using HA and SHS/HA, resulting in the highest rehydration capacity. These results suggest that a combined drying process such as SHS/FIR is more effective than conventional hot air drying for the production of partially dried cherry tomatoes with improved quality attributes.

과열증기와 열풍(과열증기/열풍건조) 또는 원적외선(과열증기/원적외선건조)으로 복합건조한 방울토마토의 이화학특성을 상응하는 열풍건조 토마토와 비교하여, 복합건조가 건조토마토의 품질특성에 미치는 영향을 조사하였다. 방울토마토의 수분함량 85.10%는 열풍건조, 과열증기/열풍 또는 원적외선의 복합건조에 따라 15.98, 22.94 및 23.08%로 각각 감소하였으며, 열풍건조와 달리 복합건조 토마토는 중간수분식품의 수분함량에 해당하는 반건조상태를 나타내었다. 건조토마토의 수축도와 표면색상은 건조 방법에 관계없이 유사하였으나, 열풍건조 토마토는 복합건조에 비해 단단한 텍스처와 낮은 풍미를 나타내었다. 방울토마토의 아스코브산 함량(260.1 mg/100 g)은 열풍건조에서 77.6 mg/100 g으로 최대 감소를 보인 반면, 복합건조의 경우에는 과열증기/열풍건조 120.8 mg/100 g, 과열증기/원적외선건조 185.2 mg/100 g으로 낮은 손실을 나타내었다. 리코펜 함량은 열풍건조, 과열증기/열풍 또는 원적외선의 복합건조에서 각각 5.55, 5.81 및 8.53 mg/100 g으로서, 대조구 대비 77, 76 및 64%의 높은 손실률을 나타내었는데, 이는 건조공정 이외에 시료의 탈피와 동결건조 과정에서 리코펜이 유실, 손상되었기 때문으로 추정된다. 그러나 건조방법에 따른 리코펜의 손실 양상을 고려할 때, 리코펜 손실은 과열증기/원적외선의 복합건조에서 가장 낮은 것으로 판단된다. 한편 수분흡수력은 모든 수침시간에서 복합건조시료가 열풍건조에 비해 현저하게 높았으며, 특히 과열증기/원적외선건조의 경우 가장 빠른 수화복원력을 나타내었다. 이상의 결과에 따라 방울토마토의 건조는 외관, 유용성분의 손실률과 수화복원력의 관점에서 과열증기처리 후 원적외선으로 건조하는 복합건조가 열풍건조에 비해 효율적인 것으로 판단된다.

Keywords

References

  1. AACC. 10th ed. Method 44-15, 86-10. Approved Method of the AACC. American Association of Cereal Chemists, St. Paul, MN, USA (2000)
  2. Boskovic M. Fate of lycopene in dehydrated tomato products: carotenoids isomerization in food system. J. Food Sci. 44: 84-86 (1979) https://doi.org/10.1111/j.1365-2621.1979.tb10011.x
  3. Chang CH, Lin HY, Chang CY, Liu YC. Comparison on the antioxidant properties of fresh, freeze-dried, and hot-air-dried tomatoes. J. Food Eng. 77: 478-475 (2006) https://doi.org/10.1016/j.jfoodeng.2005.06.061
  4. Clinton SK. Lycopene: Chemistry, biology and implications for human health and disease. Nutr. Rev. 56: 35-51 (1998)
  5. Demiray E, Tulek Y, Yilmaz Y. Degradation kinetics of lycopene, ${\beta}$-carotene, and ascorbic acid in tomatoes during hot air drying. LWT-Food Sci. Technol. 50: 172-176 (2013) https://doi.org/10.1016/j.lwt.2012.06.001
  6. Dewanto V, Wu XZ, Adom KK, Liu RH. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agr. Food Chem. 50: 3010-3014 (2002) https://doi.org/10.1021/jf0115589
  7. Genkinger JM, Platz EA, Hoffman SC, Comstok GW, Helzsouer KJ. Fruit, vegetable and antioxidant intake and all-cause, cancer and cardiovascular disease mortality in community-dwelling population in Washington County, Maryland. Am. J. Epidemiol. 160: 1223-1233 (2004) https://doi.org/10.1093/aje/kwh339
  8. Gerster H. The potential role of lycopene for human health. J. Am. Coll. Nutr. 16: 109-126 (1997) https://doi.org/10.1080/07315724.1997.10718661
  9. Giovanelli G, Zanoni B, Lavelli V, Nani R. Water sorption, drying and antioxidant properties of dried tomato products. J. Food Eng. 52: 135-141 (2002) https://doi.org/10.1016/S0260-8774(01)00095-4
  10. Giovannucci E. Tomatoes, tomato-based products, lycopene and cancer. Review of epidemiologic literature. J. Natl. Cancer I. 91: 317-331 (1999) https://doi.org/10.1093/jnci/91.4.317
  11. Heredia A, Peinado I, Rosa E, Andres A, Escriche I. Volatile profile of dehydrated cherry tomato: Influence of osmotic pre-treatment and microwave power. Food Chem. 130: 889-895 (2012) https://doi.org/10.1016/j.foodchem.2011.08.003
  12. Javanmardi J, Kubota C. Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biol. Biotechnol. 41: 151-155 (2006) https://doi.org/10.1016/j.postharvbio.2006.03.008
  13. Labuza TP. Moisture sorption: practical aspects of isotherm measurement and use. American Association of Cereal Chemists, St. Paul, MN, USA. pp 8-10 (1984)
  14. Lavelli V, Hippeli S, Peri C, Elstner EF. Evaluation of radical scavenging activity of fresh and air-dried tomatoes by three model reactions J. Agr. Food Chem. 47: 3826-3831 (1999) https://doi.org/10.1021/jf981372i
  15. Lewicki PP, Vu Le H, Pomaranska-Lazuka W. Effect of pre-treatment on convective drying of tomatoes. J. Food Eng. 44: 71-78 (2002)
  16. Manda KR, Adams C, Ercal N. Biologically important thiols in aqueous extracts of spices and evaluation of their in vitro antioxidant properties. Food Chem. 118: 589-593 (2010) https://doi.org/10.1016/j.foodchem.2009.05.025
  17. National Academy of Agricultural Science. Tables of Food Functional Composition. In: Carotenoid Content in Foods. Suwon, Korea, pp. 160 (2009)
  18. Russo A, Acquaviva R, Campisi A, Sorrenti V, Di Giacomo C, Virgata G. Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biol. Toxicol. 16: 91-98 (2000) https://doi.org/10.1023/A:1007685909018
  19. Shukla Y, Singh M. Cancer preventive properties of ginger: A brief review. Food Chem. Toxicol. 45: 683-690 (2007) https://doi.org/10.1016/j.fct.2006.11.002
  20. Stahl W, Sies H. Uptake of lycopene and its geometrical-isomers is greater from heat-processed than from unprocessed tomato juice in humans. J. Nutr. 122: 2161-2166 (1992) https://doi.org/10.1093/jn/122.11.2161
  21. Vecchia CL. Mediterranean epidemiological evidence on tomatoes and the prevention of digestive track cancers. P. Soc. Exp. Biol. Med. 218: 125-128 (1998) https://doi.org/10.3181/00379727-218-44276
  22. Zanoni B, Peri C, Nani R, Lavelli V. Oxidative heat damage of tomato halves as affected by drying. Food Res. Int. 31: 395-401 (1999)