DOI QR코드

DOI QR Code

Controllable Biogenic Synthesis of Intracellular Silver/Silver Chloride Nanoparticles by Meyerozyma guilliermondii KX008616

  • Alamri, Saad A.M. (Department of Biology, Faculty of Science, King Khalid University) ;
  • Hashem, Mohamed (Department of Biology, Faculty of Science, King Khalid University) ;
  • Nafady, Nivien A. (Department of Botany and Microbiology, Faculty of Science, Assiut University) ;
  • Sayed, Mahmoud A. (Department of Physics, Faculty of Science, King Khalid University) ;
  • Alshehri, Ali M. (Department of Biology, Faculty of Science, King Khalid University) ;
  • El-Shaboury, Gamal A. (Department of Biology, Faculty of Science, King Khalid University)
  • 투고 : 2018.02.09
  • 심사 : 2018.05.01
  • 발행 : 2018.06.28

초록

Intracellular synthesis of silver/silver chloride nanoparticles (Ag/AgCl-NPs) using Meyerozyma guilliermondii KX008616 is reported under aerobic and anaerobic conditions for the first time. The biogenic synthesis of Ag-NP types has been proposed as an easy and cost-effective alternative for various biomedical applications. The interaction of nanoparticles with ethanol production was mentioned. The purified biogenic Ag/AgCl-nanoparticles were characterized by different spectroscopic and microscopic approaches. The purified nanoparticles exhibited a surface plasmon resonance band at 419 and 415 nm, confirming the formation of Ag/AgCl-NPs under aerobic and anaerobic conditions, respectively. The planes of the cubic crystalline phase of the Ag/AgCl-NPs were confirmed by X-ray diffraction. Fourier-transform infrared spectra showed the interactions between the yeast cell constituents and silver ions to form the biogenic Ag/AgCl-NPs. The intracellular Ag/AgCl-NPs synthesized under aerobic condition were homogenous and spherical in shape, with an approximate particle size of 2.5-30nm as denoted by the transmission electron microscopy (TEM). The reaction mixture was optimized by varying reaction parameters, including temperature and pH. Analysis of ultrathin sections of yeast cells by TEM indicated that the biogenic nanoparticles were formed as clusters, known as nanoaggregates, in the cytoplasm or in the inner and outer regions of the cell wall. The study recommends using the biomass of yeast that is used in industrial or fermentation purposes to produce Ag/AgCl-NPs as associated by-products to maximize benefit and to reduce the production cost.

키워드

참고문헌

  1. Birla SS, Gaikwad SC, Gade AK, Rai MK. 2013. Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Scientific World Journal 2013: 796018.
  2. Husseiny SM, Salah TA, Anter HA. 2015. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ. J. Basic Appl. Sci. 4: 225-231. https://doi.org/10.1016/j.bjbas.2015.07.004
  3. Mahendra R, Nelson D. 2011. Metal Nanoparticles in Microbiology. Springer, Heidelberg, Germany.
  4. Mekkawy AI, El-Mokhtar MA, Nafady NA, Yousef N, Hamad MA, El-Shanawany SM, et al. 2017. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. Int. J. Nanomed. 12: 759-777. https://doi.org/10.2147/IJN.S124294
  5. Nanda A, Majeed S. 2014. Enhanced antibacterial efficacy of biosynthesized AgNPs from Penicillium glabrum (MTCC1985) pooled with different drugs. Int. J. Pharm. Tech. Res. 6: 217-223.
  6. Dasgupta N, Ranjan S, Rajendran B, Manickam V, Ramalingam C, Avadhani GS, et al. 2016. Thermal coreduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ. Sci. Pollut. Res. 23: 4149-4163. https://doi.org/10.1007/s11356-015-4570-z
  7. Naseem T, Farrukh MA. 2015. Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J. Chem. 2015: 912342.
  8. Netala VR, Kotakadi VS, Bobbu P, Gaddam SA, Tartte V. 2016. Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti-microbial studies. 3 Biotech 6: 1-9.
  9. Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, et al. 2013. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomed. 8: 4303-4314.
  10. Daenen LG, Houthuijzen JM, Cirkel GA, Roodhart JML, Shaked Y, Voest EE. 2014. Treatment induced host-mediated mechanisms reducing the efficacy of antitumor therapies. Oncogene 33: 1341-1347. https://doi.org/10.1038/onc.2013.94
  11. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, et al. 2012. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2: 519. https://doi.org/10.1038/srep00519
  12. Said DE, Elsamad LM, Gohar YM. 2012. Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents. Parasitol. Res. 111: 545-554. https://doi.org/10.1007/s00436-012-2866-1
  13. Muthukumaran, U, Govindarajan M, Rajeswary M, Hoti SL. 2015. Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol. Res. 114: 1817-1827. https://doi.org/10.1007/s00436-015-4368-4
  14. Garg S, Chandra A. 2012. Biosynthesis and anthelmintic activity of silver nanoparticles using aqueous extract of Saraca indica leaves. Int. J. Ther. Appl. 7: 9-12.
  15. Marimuthu S, Rahuman AA, Jayaseelan C, Kirthi AV, Santhoshkumar T, Velayutham K, et al. 2013. Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pac. J. Trop. Med. 66: 82-688.
  16. Shelar GB, Chavan AM. 2014. Fungus-mediated biosynthesis of silver nanoparticles and its antibacterial activity. Arch. Appl. Sci. Res. 6: 111-114.
  17. Patel V, Berthold D, Puranik P, Gantar M. 2015. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol. Rep. 5: 112-119. https://doi.org/10.1016/j.btre.2014.12.001
  18. Lee H, Purdon AM, Chu V, Westervelt RM. 2004. Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays. Nano Lett. 4: 995-998. https://doi.org/10.1021/nl049562x
  19. Lengke MF, Fleet ME, Southam G. 2007. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir 23: 2694-2699. https://doi.org/10.1021/la0613124
  20. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, et al. 2003. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14: 824. https://doi.org/10.1088/0957-4484/14/7/323
  21. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH. 2007. Functional finishing of cotton fabrics using silver nanoparticles. J. Nanosci. Nanotechnol. 7: 1893-1897. https://doi.org/10.1166/jnn.2007.737
  22. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M. 2008. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci. 4: 141-144. https://doi.org/10.2174/157341308784340804
  23. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai, MK. 2009. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett. Appl. Microbiol. 48: 173-179. https://doi.org/10.1111/j.1472-765X.2008.02510.x
  24. Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S. 2009. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater. Lett. 63: 1231-1234. https://doi.org/10.1016/j.matlet.2009.02.042
  25. Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR, et al. 2013. Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 3: 32. https://doi.org/10.1186/2191-0855-3-32
  26. Mourato A, Gadanho M, Lino AR, Tenreiro R. 2011. Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg. Chem. Appl. 2011: 546074.
  27. Fernandez JG, Fernandez-Baldo MA, Berni E, Camí G, Duran N, Raba J, et al. 2016. Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochem. 51: 1306-1313. https://doi.org/10.1016/j.procbio.2016.05.021
  28. Eugenio M, Muller N, Frases S, Almeida-Paes R, Lima LMT, Lemgruber L, et al. 2016. Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. RSC Adv. 6: 9893-9904. https://doi.org/10.1039/C5RA22727E
  29. Krumov N, Perner-Nochta I, Oder S, Gotcheva V, Angelov A, Posten C. 2009. Production of inorganic nanoparticles by microorganisms. Chem. Eng. Technol. 32: 1026-1035. https://doi.org/10.1002/ceat.200900046
  30. Kurtzman CP, Fell JW. 1998. Definition, classification and nomenclature of the yeasts, pp 3-5. In Kurtzman CP, Fell JW (eds.), The Yeasts, A Taxonomic Study, 4th Ed. Elsevier Science BV, Amsterdam, The Netherlands.
  31. Hesham A, Wang Z, Zhang Y, Zhang J, Lv W, Yang M. 2006. Isolation and identification of a yeast strain capable of degrading four and five ring aromatic hydrocarbons. Ann. Microbiol. 56: 109-112. https://doi.org/10.1007/BF03174990
  32. Kurtzman CP, Robnett CJ. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73: 331-371. https://doi.org/10.1023/A:1001761008817
  33. Hashem M, Hesham AE-L, Alrumman SA, Alamri SA, Moustafa MFM. 2014. Indigenous yeasts of the rotten date fruits and their potentiality in bioethanol and single-cell protein production. Int. J. Agric. Biol. 16: 752-758.
  34. Moghaddam AB, Namvar F, Moniri M, Tahir PM, Azizi S, Mohamad R. 2015. Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20: 16540-16565. https://doi.org/10.3390/molecules200916540
  35. Jha AK, Prasad K, Kulkarni AR. 2008. Yeast mediated synthesis of silver nanoparticles. Int. J. Nanosci. Nanotechnol. 4: 17-22.
  36. Duran N, Marcato PD, Alves OL, Souza GI, Esposito E. 2005. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnology 3: 8. https://doi.org/10.1186/1477-3155-3-8
  37. Reese RN, Winge DR. 1988. Sulfide stabilization of the cadmiumgamma- glutamyl peptide complex of Schizosaccharomyces pombe. J. Biol. Chem. 263: 12832-12835.
  38. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, et al. 1989. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338: 596-597. https://doi.org/10.1038/338596a0
  39. Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M, et al. 2001. Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17: 1674-1679. https://doi.org/10.1021/la001164w
  40. Bhainsa KC, D'Souza SF. 2006. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf. B Biointerfaces 47: 160-164. https://doi.org/10.1016/j.colsurfb.2005.11.026
  41. Virkutyte J, Varma RS. 2011. Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. 2: 837-846. https://doi.org/10.1039/C0SC00338G
  42. Kou J, Varma RS. 2012. Beet juice-induced green fabrication of plasmonic AgCl/Ag nanoparticles. ChemSusChem. 5: 2435-2441. https://doi.org/10.1002/cssc.201200477
  43. Azizi S, Namvar F, Mahdavi M, Ahmad MB, Mohamad R. 2013. Biosynthesis of silver nanoparticles using brown marine macroalga, Sargassum muticum aqueous extract. Materials (Basel) 6: 5942–5950. https://doi.org/10.3390/ma6125942
  44. Abdel-Hafez SII, Nafady NA, Abdel-Rahim IR, Shaltout AM, Daros J-A, Mohamed AM. 2016. Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech 6: 199-211.
  45. Abdel-Hafez SII, Nafady NA, Abdel-Rahim IR, Shaltout AM, Mohamed AM. 2016. Biogenesis and optimisation of silver nanoparticles by the endophytic fungus Cladosporium sphaerospermum. Int. J. Nano Chem. 2: 11-19. https://doi.org/10.18576/ijnc/020103
  46. Duran N, Cuevas R, Cordi L, Rubilar O, Diez MC. 2014. Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor. Springerplus 3: 645. https://doi.org/10.1186/2193-1801-3-645
  47. Wang P, Huang B, Lou Z, Zhang X, Qin X, Dai Y, et al. 2010. Synthesis of highly efficient Ag/AgCl plasmonic photocatalysts with various structures. Chem. Eur. J. 16: 538-544. https://doi.org/10.1002/chem.200901954
  48. Centeno SA, Shamir J. 2008. Surface enhanced Raman scattering (SERS) and FTIR characterization of the sepia melanin pigment used in works of art. J. Mol. Struct. 873: 149-159. https://doi.org/10.1016/j.molstruc.2007.03.026
  49. Nnemeka I, Godwin E-U, Olakunle F, Olushola O, Moses O, Chidozie OP, et al. 2016. Microwave enhanced synthesis of silver nanoparticles using orange peel extracts from Nigeria. Chem. Biomol. Eng. 1: 5-11.
  50. Tarangini K, Mishra S. 2013. Production, characterization and analysis of melanin from isolated marine Pseudomonas sp. using vegetable waste. Res. J. Engin. Sci. 2: 40-46.
  51. Apte M, Girme G, Bankar A, Ravi KA, Zinjarde S. 2013. 3,4-dihydroxy-L-phenylalanine-derived melanin from Yarrowia lipolytica mediates the synthesis of silver and gold nanostructures. J. Nanobiotechnology 11: 1-9 https://doi.org/10.1186/1477-3155-11-1
  52. Niraimathi KL, Sudha V, Lavanya R, Brindha P. 2013. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf. B Biointerfaces 102: 288-291. https://doi.org/10.1016/j.colsurfb.2012.08.041
  53. Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M. 2013. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf. B Biointerfaces 108: 255-259. https://doi.org/10.1016/j.colsurfb.2013.03.017
  54. Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, et al. 2012. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int. J. Nanomed. 7: 5603-5610.
  55. Kora AJ, Beedu SR, Jayaraman A. 2012. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org. Med. Chem. Lett. 2: 17-27. https://doi.org/10.1186/2191-2858-2-17
  56. Pimprikar PS. 2009. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf. B Biointerfaces 7: 309-316.
  57. Cruz D, Fale PL, Mourato A, Vaz PD, Serralheiro ML, Lino AR. 2010. Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids Surf. B Biointerfaces 81: 67-73. https://doi.org/10.1016/j.colsurfb.2010.06.025
  58. Baghizadeh A, Ranjbar S, Gupta VK, Asif M, Pourseyedi S, Karimi MJ, et al. 2015. Green synthesis of silver nanoparticles using seed extract of Calendula officinalis in liquid phase. J. Mol. Liq. 207: 159-163. https://doi.org/10.1016/j.molliq.2015.03.029
  59. Sathiyanarayanan G, Kiran GS, Selvin J. 2013. Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf. B Biointerfaces 102: 13-20. https://doi.org/10.1016/j.colsurfb.2012.07.032
  60. Suman TY, Rajasree SRR, Kanchana A, Elizabeth SB. 2013. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf. B Biointerfaces 106: 74-78. https://doi.org/10.1016/j.colsurfb.2013.01.037
  61. Mandal S, Phadtare S, Sastry M. 2005. Interfacing biology with nanoparticles. Curr. Appl. Phys. 5: 118-127. https://doi.org/10.1016/j.cap.2004.06.006
  62. Roopan SM, Madhumitha G, Rahuman AA, Kamaraj C, Bharathi A, Surendra TV. 2013. Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Coos nucifera Coir extract and its larvicidal activity. Ind. Crops Prod. 43: 631-635. https://doi.org/10.1016/j.indcrop.2012.08.013
  63. Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. 2015. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl. Microbiol. Biotechnol. 99: 4579-4593. https://doi.org/10.1007/s00253-015-6622-1
  64. Duran N, Marcato PD, Alves OL, De Souza GIH, Esposito E. 2005. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnology 3: 1-8. https://doi.org/10.1186/1477-3155-3-1
  65. Saifuddin N, Wong CW, Nur Yasumira AA. 2009. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J. Chem. 6: 61-70. https://doi.org/10.1155/2009/734264
  66. Kowshik M, Ashtaputre S, Kulkani SK, Parknikar KMM. 2003. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14: 95-100. https://doi.org/10.1088/0957-4484/14/1/321

피인용 문헌

  1. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review vol.10, pp.1, 2018, https://doi.org/10.1186/s40104-019-0368-z
  2. Biogenic silver nanoparticles: understanding the antimicrobial mechanism using Confocal Raman Microscopy vol.6, pp.12, 2018, https://doi.org/10.1088/2053-1591/ab6636
  3. Synthesis and Photocatalytic Properties of Silver Chloride/Silver Composite Colloidal Particles vol.82, pp.1, 2018, https://doi.org/10.1134/s1061933x20010160
  4. Biofilm Eradication Using Biogenic Silver Nanoparticles vol.25, pp.9, 2020, https://doi.org/10.3390/molecules25092023
  5. Biogenic Silver Nanoparticles Conjugated with Nisin: Improving the Antimicrobial and Antibiofilm Properties of Nanomaterials vol.3, pp.4, 2021, https://doi.org/10.3390/chemistry3040092
  6. Biosynthesis of Silver Chloride Nanoparticles by Rhizospheric Bacteria and Their Antibacterial Activity against Phytopathogenic Bacterium Ralstonia solanacearum vol.27, pp.1, 2018, https://doi.org/10.3390/molecules27010224
  7. New data on the fine structure of Deuteramoeba mycophaga CCAP 1586/1 (Amoebozoa, Tubulinea) vol.82, pp.None, 2018, https://doi.org/10.1016/j.ejop.2021.125853