References
- Stewart JD. 1939. Prothrombin deficiency and the effects of vitamin K in obstructive jaundice and biliary fistula. Ann. Surg. 109: 588-595. https://doi.org/10.1097/00000658-193904000-00008
-
Tsukamoto Y, Kasai M, Kakuda H. 2001. Construction of a Bacillus subtilis (natto) with high productivity of vitamin
$K_2$ (menaquinone-7) by analog resistance. Biosci. Biotechnol. Biochem. 65: 2007-2015. https://doi.org/10.1271/bbb.65.2007 - Lamson DW, Plaza SM. 2003. The anticancer effects of vitamin K. Altern. Med. Rev. 8: 303-318.
- Tsukamoto Y. 2004. Studies on action of menaquinone-7 in regulation of bone metabolism and its preventive role of osteoporosis. Biofactors 22: 5-19. https://doi.org/10.1002/biof.5520220102
- Gast GCM, de Roos NM, Sluijs I, Bots ML, Beulens JWJ, Geleijnse JM, et al. 2009. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr. Metab. Cardiovasc. Dis. 19: 504-510. https://doi.org/10.1016/j.numecd.2008.10.004
- Baldini V, Mastropasqua M, Francucci C, D'Erasmo E. 2005. Cardiovascular disease and osteoporosis. J. Endocrinol. Invest. 28: 69-72.
-
Tsukamoto Y, Ichise H, Kakuda H, Yamaguchi M. 2000. Intake of fermented soybean (natto) increases circulating vitamin
$K_2$ (menaquinone-7) and${\gamma}$ -carboxylated osteocalcin concentration in normal individuals. J. Bone Miner. Metab. 18: 216-222. https://doi.org/10.1007/s007740070023 -
Wu WJ, Ahn BY. 2011. Improved menaquinone (vitamin
$K_2$ ) production in cheonggukjang by optimization of the fermentation conditions. Food Sci. Biotechnol. 20: 1585-1591. https://doi.org/10.1007/s10068-011-0219-y -
Sato T, Yamada Y, Ohtani Y, Mitsui N, Murasawa H, Araki S. 2001. Production of menaquinone (vitamin
$K_2$ )-7 by Bacillus subtilis. J. Biosci. Bioeng. 91: 16-20. https://doi.org/10.1016/S1389-1723(01)80104-3 - Wu WJ, Ahn BY. 2011. Isolation and identification of Bacillus amyloliquefaciens BY01 with high productivity of menaquinone for cheonggukjang production. J. Korean Soc. Appl. Biol. Chem. 54: 783-789. https://doi.org/10.1007/BF03253160
- Goodman SR, Marrs BL, Narconis RJ, Olson RE. 1976. Isolation and description of a menaquinone mutant from Bacillus licheniformis. J. Bacteriol. 125: 282-289.
-
Sato T, Yamada Y, Ohtani Y, Mitsui N, Murasawa H, Araki S. 2001. Efficient production of menaquinone (vitamin
$K_2$ ) by a menadione-resistant mutant of Bacillus subtilis. J. Ind. Microbiol. Biotechnol. 26: 115-120. https://doi.org/10.1038/sj.jim.7000089 - Berenjian A, Mahanama R, Talbot A, Biffin R, Regtop H, Valtchev P, et al. 2011. Efficient media for high menaquinone- 7 production: response surface methodology approach. New Biotechnol. 28: 665-672. https://doi.org/10.1016/j.nbt.2011.07.007
- Liyana-Pathirana C, Shahidi F. 2005. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 93: 47-56. https://doi.org/10.1016/j.foodchem.2004.08.050
- Sin HN, Yusof S, Sheikh Abdul Hamid N, Rahman RA. 2006. Optimization of enzymatic clarification of sapodilla juice using response surface methodology. J. Food Eng. 73: 313-319. https://doi.org/10.1016/j.jfoodeng.2005.01.031
- Berenjian A, Mahanama R, Talbot A, Regtop H, Kavanagh J, Dehghani F. 2012. Advances in menaquinone-7 production by Bacillus subtilis natto: fed-batch glycerol addition. Am. J. Biochem. Biotechnol. 8: 105-110. https://doi.org/10.3844/ajbbsp.2012.105.110
- Sumi H, Ikeda S, Ohsugi T. 2009. Increasing the production of nattokinase and vitamin K2 in natto with dipicolinic acid. Open Food Sci. J. 2: 10-14.
- Berenjian A, Chan NC, Mahanama R, Talbot A, Regtop H, Kavanagh J, et al. 2013. Effect of biofilm formation by Bacillus subtilis natto on menaquinone-7 biosynthesis. Mol. Biotechnol. 54: 371-378. https://doi.org/10.1007/s12033-012-9576-x
- Frey DD, Engelhardt F, Greitzer EM. 2003. A role for 'onefactor- at-a-time' experimentation in parameter design. Res. Eng. Des. 14: 65-74. https://doi.org/10.1007/s00163-002-0026-9
- Adinarayana K, Ellaiah P. 2002. Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp. J. Pharm. Pharm. Sci. 5: 272-278.
- Jafari Nejad S, Abolghasemi H, Moosavian MA, Golzary A, Maragheh MG. 2010. Fractional factorial design for the optimization of hydrothermal synthesis of lanthanum oxide nanoparticles under supercritical water condition. J. Supercrit. Fluids 52: 292-297. https://doi.org/10.1016/j.supflu.2010.01.013
- Guo WQ, Ren NQ, Wang XJ, Xiang WS, Ding J, You Y, et al. 2009. Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology. Bioresour. Technol. 100: 1192-1196. https://doi.org/10.1016/j.biortech.2008.07.070
- Elibol M. 2004. Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochem. 39: 1057-1062. https://doi.org/10.1016/S0032-9592(03)00232-2
Cited by
- The optimization of fermentation conditions for Pichia pastoris GS115 producing recombinant xylanase vol.20, pp.5, 2018, https://doi.org/10.1002/elsc.201900116
- Bacillus subtilis : a universal cell factory for industry, agriculture, biomaterials and medicine vol.19, pp.None, 2018, https://doi.org/10.1186/s12934-020-01436-8
- High-level production of γ-cyclodextrin glycosyltransferase in recombinant Escherichia coli BL21 (DE3): culture medium optimization, enzymatic properties characterization, and product specificit vol.70, pp.1, 2020, https://doi.org/10.1186/s13213-020-01610-8
- Increasing chitosanase production in Bacillus cereus by a novel mutagenesis and screen method vol.12, pp.1, 2018, https://doi.org/10.1080/21655979.2020.1869438