DOI QR코드

DOI QR Code

Saci_1816: A Trehalase that Catalyzes Trehalose Degradation in the Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius

  • Lee, Junho (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Lee, Areum (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Moon, Keumok (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Choi, Kyoung-Hwa (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Cha, Jaeho (Department of Microbiology, College of Natural Sciences, Pusan National University)
  • Received : 2018.02.23
  • Accepted : 2018.04.02
  • Published : 2018.06.28

Abstract

Previously, a cytosolic trehalase (TreH) from the hyperthermophilic archaeon Sulfolobus acidocaldarius was reported; however, the gene responsible for the trehalase activity was not identified. Two genes, saci_1816 and saci_1250, that encode the glycoside hydrolase family 15 type glucoamylase-like proteins in S. acidocaldarius were targeted and expressed in Escherichia coli, and their abilities to hydrolyze trehalose were examined. Recombinant Saci_1816 hydrolyzed trehalose exclusively without any help from a cofactor. The mass spectrometric analysis of partially purified native TreH also confirmed that Saci_1816 was involved in proteins exhibiting trehalase activity. Optimal trehalose hydrolysis activity of the recombinant Saci_1816 was observed at pH 4.0 and $60^{\circ}C$. The pH dependence of the recombinant enzyme was similar to that of the native enzyme, but its optimal temperature was $20-25^{\circ}C$ lower, and its thermostability was also slightly reduced. From the biochemical and structural results, Saci_1816 was identified as a trehalase responsible for trehalose degradation in S. acidocaldarius. Identification of the treH gene confirms that the degradation of trehalose in Sulfolobus species occurs via the TreH pathway.

Keywords

References

  1. da Costa MS, Santos H, Galinski EA. 1998. An overview of the role and diversity of compatible solutes in bacteria and archaea. Adv. Biochem. Eng. Biotechnol. 61: 117-153.
  2. Martins LO, Huber R, Huber H, Stetter KO, Da Costa MS, Santos H. 1997. Organic solutes in hyperthermophilic archaea. Appl. Environ. Microbiol. 63: 896-902.
  3. Nicolaus B, Gambacorta A, Basso AL, Riccio R, Derosa M, Grant WD. 1988. Trehalose in Archaebacteria. Syst. Appl. Microbiol. 10: 215-217. https://doi.org/10.1016/S0723-2020(88)80003-1
  4. Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, et al. 1996. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim. Biophys. Acta 1291: 177-181. https://doi.org/10.1016/S0304-4165(96)00082-7
  5. Di Lernia I, Morana A, Ottombrino A, Fusco S, Rossi M, De Rosa M. 1998. Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2: 409-416. https://doi.org/10.1007/s007920050086
  6. Gueguen Y, Rolland JL, Schroeck S, Flament D, Defretin S, Saniez MH, Dietrich J. 2001. Characterization of the maltooligosyl trehalose synthase from the thermophilic archaeon Sulfolobus acidocaldarius. FEMS Microbiol. Lett. 194: 201-206. https://doi.org/10.1111/j.1574-6968.2001.tb09470.x
  7. Kobayashi K, Kato M, Miura Y, Kettoku M, Komeda T, Iwamatsu A. 1996. Gene cloning and expression of new trehalose-producing enzymes from the hyperthermophilic archaeum Sulfolobus solfataricus KM1. Biosci. Biotechnol. Biochem. 60: 1882-1885. https://doi.org/10.1271/bbb.60.1882
  8. Mukai K, Tabuchi A, Nakada T, Shibuya T, Chaen H, Fukuda S, et al. 1997. Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius. Starch 49: 26-30. https://doi.org/10.1002/star.19970490107
  9. de Pascale D, Sasso MP, Di Lernia I, Di Lazzaro A, Furia A, Farina MC, et al. 2001. Recombinant thermophilic enzymes for trehalose and trehalosyl dextrins production. J. Mol. Catal. B Enzym. 11: 777-786. https://doi.org/10.1016/S1381-1177(00)00053-9
  10. Fang TY, Hung XG, Shih TY, Tseng WC. 2004. Characterization of the trehalosyl dextrin-forming enzyme from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. Extremophiles 8: 335-343. https://doi.org/10.1007/s00792-004-0393-4
  11. Fang TY, Tseng WC, Guo MS, Shih TY, Hung XG. 2006. Expression, purification, and characterization of the maltooligosyltrehalose trehalohydrolase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. J. Agric. Food Chem. 54: 7105-7112. https://doi.org/10.1021/jf061318z
  12. Nakada T, Ikegami S, Chaen H, Kubota M, Fukuda S, Sugimoto T, et al. 1996. Purification and characterization of thermostable maltooligosyl trehalose trehalohydrolase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci. Biotechnol. Biochem. 60: 267-270. https://doi.org/10.1271/bbb.60.267
  13. Siebers B, Tjaden B, Michalke K, Dorr C, Ahmed H, Zaparty M, et al. 2004. Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J. Bacteriol. 186: 2179-2194. https://doi.org/10.1128/JB.186.7.2179-2194.2004
  14. Qu Q, Lee SJ, Boos W. 2004. TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J. Biol. Chem. 279: 47890-47897. https://doi.org/10.1074/jbc.M404955200
  15. Xavier KB, Martins LO, Peist R, Kossmann M, Boos W, Santos H. 1996. High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis. J. Bacteriol. 178: 4773-4777. https://doi.org/10.1128/jb.178.16.4773-4777.1996
  16. Moon JH, Lee W, Park J, Choi KH, Cha J. 2016. Characterization of a trehalose-degrading enzyme from the hyperthermophilic archaeon Sulfolobus acidocaldarius. J. Biosci. Bioeng. 122: 47-51. https://doi.org/10.1016/j.jbiosc.2015.12.011
  17. Sakaguchi M, Shimodaira S, Ishida SN, Amemiya M, Honda S, Sugahara Y, et al. 2015. Identification of GH15 family thermophilic archaeal trehalases that function within a narrow acidic-pH range. Appl. Environ. Microbiol. 81: 4920-4931. https://doi.org/10.1128/AEM.00956-15
  18. Carroll JD, Pastuszak I, Edavana VK, Pan YT, Elbein AD. 2007. A novel trehalase from Mycobacterium smegmatis - purification, properties, requirements. FEBS J. 274: 1701-1714. https://doi.org/10.1111/j.1742-4658.2007.05715.x
  19. Choi KH, Hwang S, Cha J. 2013. Identification and characterization of MalA in the maltose/maltodextrin operon of Sulfolobus acidocaldarius DSM639. J. Bacteriol. 195: 1789-1799. https://doi.org/10.1128/JB.01713-12
  20. Ryu SI, Park CS, Cha J, Woo EJ, Lee SB. 2005. A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: molecular cloning and characterization. Biochem. Biophys. Res. Commun. 329: 429-436. https://doi.org/10.1016/j.bbrc.2005.01.149

Cited by

  1. Early Response of Sulfolobus acidocaldarius to Nutrient Limitation vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.03201
  2. Diverse and common features of trehalases and their contributions to microbial trehalose metabolism vol.104, pp.5, 2018, https://doi.org/10.1007/s00253-019-10339-7
  3. Salt Stress Response of Sulfolobus acidocaldarius Involves Complex Trehalose Metabolism Utilizing a Novel Trehalose-6-Phosphate Synthase (TPS)/Trehalose-6-Phosphate Phosphatase (TPP) Pathway vol.86, pp.24, 2018, https://doi.org/10.1128/aem.01565-20