DOI QR코드

DOI QR Code

Antiviral Effect of Retro-2.1 against Herpes Simplex Virus Type 2 In Vitro

  • Dai, Wenwen (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University) ;
  • Wu, Yu (Joliot, CEA, LabEx LERMIT, Universite Paris-Saclay) ;
  • Bi, Jinpeng (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University) ;
  • Wang, Jingyu (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University) ;
  • Wang, Shuai (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University) ;
  • Kong, Wei (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University) ;
  • Barbier, Julien (Joliot, CEA, LabEx LERMIT, Universite Paris-Saclay) ;
  • Cintrat, Jean-Christophe (Joliot, CEA, LabEx LERMIT, Universite Paris-Saclay) ;
  • Gao, Feng (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University) ;
  • Jiang, Zhengran (Maclay School) ;
  • Gillet, Daniel (Joliot, CEA, LabEx LERMIT, Universite Paris-Saclay) ;
  • Su, Weiheng (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University) ;
  • Jiang, Chunlai (National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University)
  • Received : 2017.12.27
  • Accepted : 2018.04.09
  • Published : 2018.06.28

Abstract

Herpes simplex virus type 2 (HSV-2) infection has been a public health concern worldwide. It is the leading cause of genital herpes and a contributing factor to cervical cancer and human immunodeficiency virus (HIV) infection. No vaccine is available yet for the treatment of HSV-2 infection, and routinely used synthetic nucleoside analogs have led to the emergence of drug resistance. The small molecule $Retro-2^{cycl}$ has been reported to be active against several pathogens by acting on intracellular vesicle transport, which also participates in the HSV-2 lifecycle. Here, we showed that Retro-2.1, which is an optimized, more potent derivative of $Retro-2^{cycl}$, could inhibit HSV-2 infection, with 50% inhibitory concentrations of $5.58{\mu}M$ and $6.35{\mu}M$ in cytopathic effect inhibition and plaque reduction assays, respectively. The cytotoxicity of Retro-2.1 was relatively low, with a 50% cytotoxicity concentration of $116.5{\mu}M$. We also preliminarily identified that Retro-2.1 exerted the antiviral effect against HSV-2 by a dual mechanism of action on virus entry and late stages of infection. Therefore, our study for the first time demonstrated Retro-2.1 as an effective antiviral agent against HSV-2 in vitro with targets distinct from those of nucleoside analogs.

Keywords

References

  1. Whitley RJ, Kimberlin DW, Roizman B. 1998. Herpes simplex viruses. Clin. Infect. Diseases 26: 541-553; quiz 554-545. https://doi.org/10.1086/514600
  2. Gupta R, Warren T, Wald A. 2007. Genital herpes. Lancet 370: 2127-2137. https://doi.org/10.1016/S0140-6736(07)61908-4
  3. Celum CL. 2004. The interaction between herpes simplex virus and human immunodeficiency virus. Herpes 11 (Suppl 1): 36A-45A.
  4. Wald A, Link K. 2002. Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: a meta-analysis. J. Infect. Dis. 185: 45-52. https://doi.org/10.1086/338231
  5. Lehtinen M, Koskela P, Jellum E, Bloigu A, Anttila T, Hallmans G, et al. 2002. Herpes simplex virus and risk of cervical cancer: a longitudinal, nested case-control study in the Nordic countries. Am. J. Epidemiol. 156: 687-692. https://doi.org/10.1093/aje/kwf098
  6. Looker KJ, Gamett GP, Schmid GP. 2008. An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection. Bull. World Health Organ. 86: 805-812. https://doi.org/10.2471/BLT.07.046128
  7. Johnston C, Koelle DM, Wald A. 2011. HSV-2: in pursuit of a vaccine. J. Clin. Invest. 121: 4600-4609. https://doi.org/10.1172/JCI57148
  8. Cassady KA, Whitley RJ. 1997. New therapeutic approaches to the alphaherpesvirus infections. J. Antimicrob. Chemother. 39: 119-128. https://doi.org/10.1093/jac/39.2.119
  9. Morfin F, Thouvenot D. 2003. Herpes simplex virus resistance to antiviral drugs. J. Clin. Virol. 26: 29-37. https://doi.org/10.1016/S1386-6532(02)00263-9
  10. De SK, Hart JCL, B reuer J. 2015. H erpes simplex virus and varicella zoster virus: recent advances in therapy. Curr. Opin. Infect. Dis. 28: 589-595.
  11. Stechmann B, Bai S-K, Gobbo E, Lopez R, Merer G, Pinchard S, et al. 2010. Inhibition of retrograde transport protects mice from lethal ricin challenge. Cell 141: 231-242. https://doi.org/10.1016/j.cell.2010.01.043
  12. Cai H, Reinisch K, Ferro-Novick S. 2007. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12: 671-682. https://doi.org/10.1016/j.devcel.2007.04.005
  13. Carney DW, Nelson CDS, Ferris BD, Stevens JP, Lipovsky A, Kazakov T, et al. 2014. Structural optimization of a retrograde trafficking inhibitor that protects cells from infections by human polyoma- and papillomaviruses. Bioorg. Med. Chem. 22: 4836-4847. https://doi.org/10.1016/j.bmc.2014.06.053
  14. Nelson CDS, Carney DW, Derdowski A, Lipovsky A, Gee GV, O'Hara B, et al. 2013. A retrograde trafficking inhibitor of ricin and Shiga-like toxins inhibits infection of cells by human and monkey polyomaviruses. Mbio 4: e00729-13.
  15. Maginnis MS, Nelson CDS, Atwood WJ. 2015. JC polyomavirus attachment, entry, and trafficking: unlocking the keys to a fatal infection. J. Neurovirol. 21: 601-613. https://doi.org/10.1007/s13365-014-0272-4
  16. Harrison K, Haga IR, Pechenick Jowers T, Jasim S, Cintrat J-C, Gillet D, et al. 2016. Vaccinia virus uses retromer-independent cellular retrograde transport pathways to facilitate the wrapping of intracellular mature virions during viral morphogenesis. J. Virol. 90: 10120-10132. https://doi.org/10.1128/JVI.01464-16
  17. Sivan G, Weisberg AS, Americo JL, Moss B. 2016. Retrograde transport from early endosomes to the trans-golgi network enables membrane wrapping and egress of vaccinia virus virions. J. Virol. 90: 8891-8905. https://doi.org/10.1128/JVI.01114-16
  18. Nonnenmacher ME, Cintrat J-C, Gillet D, Weber T. 2015. Syntaxin 5-dependent retrograde transport to the trans-golgi network is required for adeno-associated virus transduction. J. Virol. 89: 1673-1687. https://doi.org/10.1128/JVI.02520-14
  19. Gupta N, Noel R, Goudet A, Hinsinger K, Michau A, Pons V, et al. 2017. Inhibitors of retrograde trafficking active against ricin and Shiga toxins also protect cells from several viruses, Leishmania and Chlamydiales. Chem. Biol. Int. 267: 96-103. https://doi.org/10.1016/j.cbi.2016.10.005
  20. Canton J, Kima PE. 2012. Targeting host syntaxin-5 preferentially blocks Leishmania parasitophorous vacuole development in infected cells and limits experimental Leishmania infections. Am. J. Pathol. 181: 1348-1355. https://doi.org/10.1016/j.ajpath.2012.06.041
  21. Herweg J-A, Pons V, Becher D, Hecker M, Krohne G, Barbier J, et al. 2016. Proteomic analysis of the Simkaniacontaining vacuole: the central role of retrograde transport. Mol. Microbiol. 99: 151-171. https://doi.org/10.1111/mmi.13222
  22. Secher T, Shima A, Hinsinger K, Cintrat JC, Johannes L, Barbier J, et al. 2015. Retrograde trafficking inhibitor of Shiga toxins reduces morbidity and mortality of mice infected with enterohemorrhagic Escherichia coli. Antimicrob. Agents Chemother. 59: 5010-5013. https://doi.org/10.1128/AAC.00455-15
  23. Dai W, Wu Y, Bi J, Lu X, Hou A, Zhou Y, et al. 2017. Antiviral effects of Retro-2cycl and Retro-2.1 against Enterovirus 71 in vitro and in vivo. Antiviral Res. 144: 311-321. https://doi.org/10.1016/j.antiviral.2017.07.001
  24. Gupta N, Pons V, Noel R, Buisson D-A, Michau A, Johannes L, et al. 2014. (S)-N-Methyldihydroquinazolinones are the active enantiomers of Retro-2 derived compounds against toxins. ACS Med. Chem. Lett. 5: 94-97. https://doi.org/10.1021/ml400457j
  25. Mingo R M, H an J, Newcomb W W, Brown JC. 2012. Replication of herpes simplex virus: egress of progeny virus at specialized cell membrane sites. J. Virol. 86: 7084-7097. https://doi.org/10.1128/JVI.00463-12
  26. Granzow H, Klupp BG, Fuchs W, Veits J, Osterrieder N, Mettenleiter TC. 2001. Egress of alphaherpesviruses: comparative ultrastructural study. J. Virol. 75: 3675-3684. https://doi.org/10.1128/JVI.75.8.3675-3684.2001
  27. Owen DJ, Crump CM, Graham SC. 2015. Tegument assembly and secondary envelopment of alphaherpesviruses. Viruses 7: 5084-5114. https://doi.org/10.3390/v7092861
  28. Bourinbaiar AS, Lee-Huang S. 1996. The activity of plantderived antiretroviral proteins MAP30 and GAP31 against herpes simplex virus in vitro. Biochem. Biophys. Res. Commun. 219: 923-929. https://doi.org/10.1006/bbrc.1996.0334
  29. Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A. 2003. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198: 513-520. https://doi.org/10.1084/jem.20030162
  30. Crouch SP, Kozlowski R, Slater KJ, Fletcher J. 1993. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Methods 160: 81-88. https://doi.org/10.1016/0022-1759(93)90011-U
  31. Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P, et al. 1988. Rapid and automated tetrazoliumbased colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods 20: 309-321. https://doi.org/10.1016/0166-0934(88)90134-6
  32. Brown JC, Newcomb WW. 2011. Herpesvirus capsid assembly: insights from structural analysis. Curr. Opin. Virol. 1: 142-149. https://doi.org/10.1016/j.coviro.2011.06.003
  33. Yao F, Eriksson E. 2002. Inhibition of herpes simplex virus type 2 (HSV-2) viral replication by the dominant negative mutant polypeptide of HSV-1 origin binding protein. Antiviral Res. 53: 127-133. https://doi.org/10.1016/S0166-3542(01)00207-8
  34. Argenta DF, Silva IT, Bassani VL, Koester LS, Teixeira HF, Simoes CMO. 2015. Antiherpes evaluation of soybean isoflavonoids. Arch. Virol. 160: 2335-2342. https://doi.org/10.1007/s00705-015-2514-z
  35. Antoine TE, Mishra YK, Trigilio J, Tiwari V, Adelung R, Shukla D. 2012. Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. Antiviral Res. 96: 363-375. https://doi.org/10.1016/j.antiviral.2012.09.020
  36. Mues MB, Cheshenko N, Wilson DW, Gunther-Cummins L, Herold BC. 2015. Dynasore disrupts trafficking of herpes simplex virus proteins. J. Virol. 89: 6673-6684. https://doi.org/10.1128/JVI.00636-15
  37. Boehmer PE, Lehman IR. 1997. Herpes simplex virus DNA replication. Annu. Rev. Biochem. 66: 347-384. https://doi.org/10.1146/annurev.biochem.66.1.347
  38. Koyama AH, Uchida T. 1988. Quantitative studies on the maturation process of herpes simplex virus type 1 in Vero cells. Virus Res. 10: 281-285. https://doi.org/10.1016/0168-1702(88)90023-8
  39. Harden EA, Falshaw R, Carnachan SM, Kern ER, Prichard MN. 2009. Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antiviral Res. 83: 282-289. https://doi.org/10.1016/j.antiviral.2009.06.007
  40. Gong YH, Matthews B, Cheung D, Tam T, Gadawski I, Leung D, et al. 2002. Evidence of dual sites of action of dendrimers: SPL-2999 inhibits both virus entry and late stages of herpes simplex virus replication. Antiviral Res. 55: 319-329. https://doi.org/10.1016/S0166-3542(02)00054-2
  41. Kalu NN, Desai PJ, Shirley CM, Gibson W, Dennis PA, Ambinder RF. 2014. Nelfinavir inhibits maturation and export of herpes simplex virus 1. J. Virol. 88: 5455-5461. https://doi.org/10.1128/JVI.03790-13
  42. Brugha R, Keersmaekers K, Renton A, Meheus A. 1997. Genital herpes infection: a review. Int. J. Epidemiol. 26: 698-709. https://doi.org/10.1093/ije/26.4.698
  43. Tsuchiya Y, Shimizu M, Hiyama Y, Itoh K, Hashimoto Y, Nakayama M, et al. 1985. Antiviral activity of natural occurring flavonoids in vitro. Chem. Pharm. Bull. 33: 3881-3886. https://doi.org/10.1248/cpb.33.3881
  44. Akhtar J, Shukla D. 2009. Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS J. 276: 7228-7236. https://doi.org/10.1111/j.1742-4658.2009.07402.x
  45. Agelidis AM, Shukla D. 2015. Cell entry mechanisms of HSV: what we have learned in recent years. Future Virol. 10: 1145-1154. https://doi.org/10.2217/fvl.15.85
  46. Hadigal S, Shukla D. 2013. Exploiting herpes simplex virus entry for novel therapeutics. Viruses 5: 1447-1465. https://doi.org/10.3390/v5061447
  47. Dan K, Miyashita K, Seto Y, Fujita H, Yamase T. 2002. The memory effect of heteropolyoxotungstate (PM-19) pretreatment on infection by herpes simplex virus at the penetration stage. Pharm. Res. 46: 357-362. https://doi.org/10.1016/S1043661802001706
  48. Qiu M, Chen Y, Song S, Song H, Chu Y, Yuan Z, et al. 2012. Poly (4-styrenesulfonic acid-co-maleic acid) is an entry inhibitor against both HIV-1 and HSV infections - potential as a dual functional microbicide. Antiviral Res. 96: 138-147. https://doi.org/10.1016/j.antiviral.2012.08.005
  49. Schang LM. 2014. Biophysical approaches to entry inhibitor antivirals with a broad spectrum of action. Future Virol. 9: 283-299. https://doi.org/10.2217/fvl.13.130
  50. Noel R, Gupta N, Pons V, Goudet A, Garcia-Castillo MD, Michau A, et al. 2013. N-Methyldihydroquinazolinone derivatives of Retro-2 with enhanced efficacy against Shiga toxin. J. Med. Chem. 56: 3404-3413. https://doi.org/10.1021/jm4002346
  51. Yu S, Park JG, Kahn JN, Tumer NE, Pang Y-P. 2013. Common pharmacophore of structurally distinct smallmolecule inhibitors of intracellular retrograde trafficking of ribosome inactivating proteins. Sci. Rep. 3: 3397. https://doi.org/10.1038/srep03397
  52. Craig E, Huyghues-Despointes C-E, Yu C, Handy EL, Sello JK, Kima PE. 2017. Structurally optimized analogs of the retrograde trafficking inhibitor Retro-2cycl limit Leishmania infections. PLoS Negl. Trop. Dis. 11: e0005556. https://doi.org/10.1371/journal.pntd.0005556

Cited by

  1. Small Trafficking Inhibitor Retro-2 Disrupts the Microtubule-Dependent Trafficking of Autophagic Vacuoles vol.8, pp.None, 2018, https://doi.org/10.3389/fcell.2020.00464
  2. Herpes Simplex Virus Entry by a Nonconventional Endocytic Pathway vol.94, pp.24, 2018, https://doi.org/10.1128/jvi.01910-20
  3. Antiviral mechanism of carvacrol on HSV-2 infectivity through inhibition of RIP3-mediated programmed cell necrosis pathway and ubiquitin-proteasome system in BSC-1 cells vol.20, pp.1, 2018, https://doi.org/10.1186/s12879-020-05556-9
  4. Identification of an Antiviral Compound from the Pandemic Response Box that Efficiently Inhibits SARS-CoV-2 Infection In Vitro vol.8, pp.12, 2020, https://doi.org/10.3390/microorganisms8121872