References
- Whitley RJ, Kimberlin DW, Roizman B. 1998. Herpes simplex viruses. Clin. Infect. Diseases 26: 541-553; quiz 554-545. https://doi.org/10.1086/514600
- Gupta R, Warren T, Wald A. 2007. Genital herpes. Lancet 370: 2127-2137. https://doi.org/10.1016/S0140-6736(07)61908-4
- Celum CL. 2004. The interaction between herpes simplex virus and human immunodeficiency virus. Herpes 11 (Suppl 1): 36A-45A.
- Wald A, Link K. 2002. Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: a meta-analysis. J. Infect. Dis. 185: 45-52. https://doi.org/10.1086/338231
- Lehtinen M, Koskela P, Jellum E, Bloigu A, Anttila T, Hallmans G, et al. 2002. Herpes simplex virus and risk of cervical cancer: a longitudinal, nested case-control study in the Nordic countries. Am. J. Epidemiol. 156: 687-692. https://doi.org/10.1093/aje/kwf098
- Looker KJ, Gamett GP, Schmid GP. 2008. An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection. Bull. World Health Organ. 86: 805-812. https://doi.org/10.2471/BLT.07.046128
- Johnston C, Koelle DM, Wald A. 2011. HSV-2: in pursuit of a vaccine. J. Clin. Invest. 121: 4600-4609. https://doi.org/10.1172/JCI57148
- Cassady KA, Whitley RJ. 1997. New therapeutic approaches to the alphaherpesvirus infections. J. Antimicrob. Chemother. 39: 119-128. https://doi.org/10.1093/jac/39.2.119
- Morfin F, Thouvenot D. 2003. Herpes simplex virus resistance to antiviral drugs. J. Clin. Virol. 26: 29-37. https://doi.org/10.1016/S1386-6532(02)00263-9
- De SK, Hart JCL, B reuer J. 2015. H erpes simplex virus and varicella zoster virus: recent advances in therapy. Curr. Opin. Infect. Dis. 28: 589-595.
- Stechmann B, Bai S-K, Gobbo E, Lopez R, Merer G, Pinchard S, et al. 2010. Inhibition of retrograde transport protects mice from lethal ricin challenge. Cell 141: 231-242. https://doi.org/10.1016/j.cell.2010.01.043
- Cai H, Reinisch K, Ferro-Novick S. 2007. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12: 671-682. https://doi.org/10.1016/j.devcel.2007.04.005
- Carney DW, Nelson CDS, Ferris BD, Stevens JP, Lipovsky A, Kazakov T, et al. 2014. Structural optimization of a retrograde trafficking inhibitor that protects cells from infections by human polyoma- and papillomaviruses. Bioorg. Med. Chem. 22: 4836-4847. https://doi.org/10.1016/j.bmc.2014.06.053
- Nelson CDS, Carney DW, Derdowski A, Lipovsky A, Gee GV, O'Hara B, et al. 2013. A retrograde trafficking inhibitor of ricin and Shiga-like toxins inhibits infection of cells by human and monkey polyomaviruses. Mbio 4: e00729-13.
- Maginnis MS, Nelson CDS, Atwood WJ. 2015. JC polyomavirus attachment, entry, and trafficking: unlocking the keys to a fatal infection. J. Neurovirol. 21: 601-613. https://doi.org/10.1007/s13365-014-0272-4
- Harrison K, Haga IR, Pechenick Jowers T, Jasim S, Cintrat J-C, Gillet D, et al. 2016. Vaccinia virus uses retromer-independent cellular retrograde transport pathways to facilitate the wrapping of intracellular mature virions during viral morphogenesis. J. Virol. 90: 10120-10132. https://doi.org/10.1128/JVI.01464-16
- Sivan G, Weisberg AS, Americo JL, Moss B. 2016. Retrograde transport from early endosomes to the trans-golgi network enables membrane wrapping and egress of vaccinia virus virions. J. Virol. 90: 8891-8905. https://doi.org/10.1128/JVI.01114-16
- Nonnenmacher ME, Cintrat J-C, Gillet D, Weber T. 2015. Syntaxin 5-dependent retrograde transport to the trans-golgi network is required for adeno-associated virus transduction. J. Virol. 89: 1673-1687. https://doi.org/10.1128/JVI.02520-14
- Gupta N, Noel R, Goudet A, Hinsinger K, Michau A, Pons V, et al. 2017. Inhibitors of retrograde trafficking active against ricin and Shiga toxins also protect cells from several viruses, Leishmania and Chlamydiales. Chem. Biol. Int. 267: 96-103. https://doi.org/10.1016/j.cbi.2016.10.005
- Canton J, Kima PE. 2012. Targeting host syntaxin-5 preferentially blocks Leishmania parasitophorous vacuole development in infected cells and limits experimental Leishmania infections. Am. J. Pathol. 181: 1348-1355. https://doi.org/10.1016/j.ajpath.2012.06.041
- Herweg J-A, Pons V, Becher D, Hecker M, Krohne G, Barbier J, et al. 2016. Proteomic analysis of the Simkaniacontaining vacuole: the central role of retrograde transport. Mol. Microbiol. 99: 151-171. https://doi.org/10.1111/mmi.13222
- Secher T, Shima A, Hinsinger K, Cintrat JC, Johannes L, Barbier J, et al. 2015. Retrograde trafficking inhibitor of Shiga toxins reduces morbidity and mortality of mice infected with enterohemorrhagic Escherichia coli. Antimicrob. Agents Chemother. 59: 5010-5013. https://doi.org/10.1128/AAC.00455-15
- Dai W, Wu Y, Bi J, Lu X, Hou A, Zhou Y, et al. 2017. Antiviral effects of Retro-2cycl and Retro-2.1 against Enterovirus 71 in vitro and in vivo. Antiviral Res. 144: 311-321. https://doi.org/10.1016/j.antiviral.2017.07.001
- Gupta N, Pons V, Noel R, Buisson D-A, Michau A, Johannes L, et al. 2014. (S)-N-Methyldihydroquinazolinones are the active enantiomers of Retro-2 derived compounds against toxins. ACS Med. Chem. Lett. 5: 94-97. https://doi.org/10.1021/ml400457j
- Mingo R M, H an J, Newcomb W W, Brown JC. 2012. Replication of herpes simplex virus: egress of progeny virus at specialized cell membrane sites. J. Virol. 86: 7084-7097. https://doi.org/10.1128/JVI.00463-12
- Granzow H, Klupp BG, Fuchs W, Veits J, Osterrieder N, Mettenleiter TC. 2001. Egress of alphaherpesviruses: comparative ultrastructural study. J. Virol. 75: 3675-3684. https://doi.org/10.1128/JVI.75.8.3675-3684.2001
- Owen DJ, Crump CM, Graham SC. 2015. Tegument assembly and secondary envelopment of alphaherpesviruses. Viruses 7: 5084-5114. https://doi.org/10.3390/v7092861
- Bourinbaiar AS, Lee-Huang S. 1996. The activity of plantderived antiretroviral proteins MAP30 and GAP31 against herpes simplex virus in vitro. Biochem. Biophys. Res. Commun. 219: 923-929. https://doi.org/10.1006/bbrc.1996.0334
- Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A. 2003. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198: 513-520. https://doi.org/10.1084/jem.20030162
- Crouch SP, Kozlowski R, Slater KJ, Fletcher J. 1993. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Methods 160: 81-88. https://doi.org/10.1016/0022-1759(93)90011-U
- Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P, et al. 1988. Rapid and automated tetrazoliumbased colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods 20: 309-321. https://doi.org/10.1016/0166-0934(88)90134-6
- Brown JC, Newcomb WW. 2011. Herpesvirus capsid assembly: insights from structural analysis. Curr. Opin. Virol. 1: 142-149. https://doi.org/10.1016/j.coviro.2011.06.003
- Yao F, Eriksson E. 2002. Inhibition of herpes simplex virus type 2 (HSV-2) viral replication by the dominant negative mutant polypeptide of HSV-1 origin binding protein. Antiviral Res. 53: 127-133. https://doi.org/10.1016/S0166-3542(01)00207-8
- Argenta DF, Silva IT, Bassani VL, Koester LS, Teixeira HF, Simoes CMO. 2015. Antiherpes evaluation of soybean isoflavonoids. Arch. Virol. 160: 2335-2342. https://doi.org/10.1007/s00705-015-2514-z
- Antoine TE, Mishra YK, Trigilio J, Tiwari V, Adelung R, Shukla D. 2012. Prophylactic, therapeutic and neutralizing effects of zinc oxide tetrapod structures against herpes simplex virus type-2 infection. Antiviral Res. 96: 363-375. https://doi.org/10.1016/j.antiviral.2012.09.020
- Mues MB, Cheshenko N, Wilson DW, Gunther-Cummins L, Herold BC. 2015. Dynasore disrupts trafficking of herpes simplex virus proteins. J. Virol. 89: 6673-6684. https://doi.org/10.1128/JVI.00636-15
- Boehmer PE, Lehman IR. 1997. Herpes simplex virus DNA replication. Annu. Rev. Biochem. 66: 347-384. https://doi.org/10.1146/annurev.biochem.66.1.347
- Koyama AH, Uchida T. 1988. Quantitative studies on the maturation process of herpes simplex virus type 1 in Vero cells. Virus Res. 10: 281-285. https://doi.org/10.1016/0168-1702(88)90023-8
- Harden EA, Falshaw R, Carnachan SM, Kern ER, Prichard MN. 2009. Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antiviral Res. 83: 282-289. https://doi.org/10.1016/j.antiviral.2009.06.007
- Gong YH, Matthews B, Cheung D, Tam T, Gadawski I, Leung D, et al. 2002. Evidence of dual sites of action of dendrimers: SPL-2999 inhibits both virus entry and late stages of herpes simplex virus replication. Antiviral Res. 55: 319-329. https://doi.org/10.1016/S0166-3542(02)00054-2
- Kalu NN, Desai PJ, Shirley CM, Gibson W, Dennis PA, Ambinder RF. 2014. Nelfinavir inhibits maturation and export of herpes simplex virus 1. J. Virol. 88: 5455-5461. https://doi.org/10.1128/JVI.03790-13
- Brugha R, Keersmaekers K, Renton A, Meheus A. 1997. Genital herpes infection: a review. Int. J. Epidemiol. 26: 698-709. https://doi.org/10.1093/ije/26.4.698
- Tsuchiya Y, Shimizu M, Hiyama Y, Itoh K, Hashimoto Y, Nakayama M, et al. 1985. Antiviral activity of natural occurring flavonoids in vitro. Chem. Pharm. Bull. 33: 3881-3886. https://doi.org/10.1248/cpb.33.3881
- Akhtar J, Shukla D. 2009. Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. FEBS J. 276: 7228-7236. https://doi.org/10.1111/j.1742-4658.2009.07402.x
- Agelidis AM, Shukla D. 2015. Cell entry mechanisms of HSV: what we have learned in recent years. Future Virol. 10: 1145-1154. https://doi.org/10.2217/fvl.15.85
- Hadigal S, Shukla D. 2013. Exploiting herpes simplex virus entry for novel therapeutics. Viruses 5: 1447-1465. https://doi.org/10.3390/v5061447
- Dan K, Miyashita K, Seto Y, Fujita H, Yamase T. 2002. The memory effect of heteropolyoxotungstate (PM-19) pretreatment on infection by herpes simplex virus at the penetration stage. Pharm. Res. 46: 357-362. https://doi.org/10.1016/S1043661802001706
- Qiu M, Chen Y, Song S, Song H, Chu Y, Yuan Z, et al. 2012. Poly (4-styrenesulfonic acid-co-maleic acid) is an entry inhibitor against both HIV-1 and HSV infections - potential as a dual functional microbicide. Antiviral Res. 96: 138-147. https://doi.org/10.1016/j.antiviral.2012.08.005
- Schang LM. 2014. Biophysical approaches to entry inhibitor antivirals with a broad spectrum of action. Future Virol. 9: 283-299. https://doi.org/10.2217/fvl.13.130
- Noel R, Gupta N, Pons V, Goudet A, Garcia-Castillo MD, Michau A, et al. 2013. N-Methyldihydroquinazolinone derivatives of Retro-2 with enhanced efficacy against Shiga toxin. J. Med. Chem. 56: 3404-3413. https://doi.org/10.1021/jm4002346
- Yu S, Park JG, Kahn JN, Tumer NE, Pang Y-P. 2013. Common pharmacophore of structurally distinct smallmolecule inhibitors of intracellular retrograde trafficking of ribosome inactivating proteins. Sci. Rep. 3: 3397. https://doi.org/10.1038/srep03397
- Craig E, Huyghues-Despointes C-E, Yu C, Handy EL, Sello JK, Kima PE. 2017. Structurally optimized analogs of the retrograde trafficking inhibitor Retro-2cycl limit Leishmania infections. PLoS Negl. Trop. Dis. 11: e0005556. https://doi.org/10.1371/journal.pntd.0005556
Cited by
- Small Trafficking Inhibitor Retro-2 Disrupts the Microtubule-Dependent Trafficking of Autophagic Vacuoles vol.8, pp.None, 2018, https://doi.org/10.3389/fcell.2020.00464
- Herpes Simplex Virus Entry by a Nonconventional Endocytic Pathway vol.94, pp.24, 2018, https://doi.org/10.1128/jvi.01910-20
- Antiviral mechanism of carvacrol on HSV-2 infectivity through inhibition of RIP3-mediated programmed cell necrosis pathway and ubiquitin-proteasome system in BSC-1 cells vol.20, pp.1, 2018, https://doi.org/10.1186/s12879-020-05556-9
- Identification of an Antiviral Compound from the Pandemic Response Box that Efficiently Inhibits SARS-CoV-2 Infection In Vitro vol.8, pp.12, 2020, https://doi.org/10.3390/microorganisms8121872