References
- Vinderola G, Perdigon G, Duarte J, Farnworth E, Matar C. 2006. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36: 254-260. https://doi.org/10.1016/j.cyto.2007.01.003
- Kitazawa H, Harata T, Uemura J, Saito T, Kaneko T, Itoh T. 1998. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int. J. Food Microbiol. 40: 169-175. https://doi.org/10.1016/S0168-1605(98)00030-0
- Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. 2014. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63: 1913-1920. https://doi.org/10.1136/gutjnl-2013-306541
- Ruas-Madiedo P, de los Reyes-Gavilan CG. 2005. Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J. Dairy Sci. 88: 843-856. https://doi.org/10.3168/jds.S0022-0302(05)72750-8
- Ruas-Madiedo P, Hugenholtz J, Zoon P. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 12: 163-171. https://doi.org/10.1016/S0958-6946(01)00160-1
- Van Den Berg D, Robijn GW, Janssen AC, Giuseppin M, Vreeker R, Kamerling JP, et al. 1995. Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide. Appl. Environ. Microbiol. 61: 2840-2844.
- Faber EJ, Zoon P, Kamerling JP, Vliegenthart JF. 1998. The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydr. Res. 310: 269-276. https://doi.org/10.1016/S0008-6215(98)00189-X
- Hidalgo-Cantabrana C, Lopez P, Gueimonde M, Clara G, Suarez A, Margolles A, et al. 2012. Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics Antimicrob. Proteins 4: 227-237. https://doi.org/10.1007/s12602-012-9110-2
- Cerning J, Renard C, Thibault J, Bouillanne C, Landon M, Desmazeaud M, et al. 1994. Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60: 3914-3919.
- De Vuyst L, Degeest B. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153-177. https://doi.org/10.1111/j.1574-6976.1999.tb00395.x
- De Vuyst L, De Vin F, Vaningelgem F, Degeest B. 2001. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 687-707. https://doi.org/10.1016/S0958-6946(01)00114-5
- Morona JK, Morona R, Miller DC, Paton JC. 2003. Mutational analysis of the carboxy-terminal (YGX)4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J. Bacteriol. 185: 3009-3019. https://doi.org/10.1128/JB.185.10.3009-3019.2003
- Bender M, Cartee R, Yother J. 2003. Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J. Bacteriol. 185: 6057-6066. https://doi.org/10.1128/JB.185.20.6057-6066.2003
- Minic Z, Marie C, Delorme C, Faurie JM, Mercier G, Ehrlich D, et al. 2007. Control of EpsE, the phosphoglycosyltransferase initiating exopolysaccharide synthesis in Streptococcus thermophilus, by EpsD tyrosine kinase. J. Bacteriol. 189: 1351-1357. https://doi.org/10.1128/JB.01122-06
- Horn N, Wegmann U, Dertli E, Mulholland F, Collins SRA, Waldron KW, et al. 2013. Spontaneous mutation reveals influence of exopolysaccharide on Lactobacillus johnsonii surface characteristics. PLoS One 8: e59957. https://doi.org/10.1371/journal.pone.0059957
- Bergmaier D, Champagne C, Lacroix C. 2003. Exopolysaccharide production during batch cultures with free and immobilized Lactobacillus rhamnosus RW-9595M. J. Appl. Microbiol. 95: 1049-1057. https://doi.org/10.1046/j.1365-2672.2003.02084.x
- Van Calsteren M-R, Pau-Roblot C, Begin A, Roy D. 2002. Structure determination of the exopolysaccharide produced by Lactobacillus rhamnosus strains RW-9595M and R. Biochem. J. 363: 7. https://doi.org/10.1042/bj3630007
- Péant B, LaPointe G, Gilbert C, Atlan D, Ward P, Roy D. 2005. Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology 151: 1839-1851. https://doi.org/10.1099/mic.0.27852-0
- Chabot S, Yu HL, De Leseleuc L, Cloutier D, Van Calsteren MR, Lessard M, et al. 2001. Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells, and IFN-in mouse splenocytes. Le Lait 81: 683-697. https://doi.org/10.1051/lait:2001157
- Bleau C, Monges A, Rashidan K, Laverdure JP, Lacroix M, Van Calsteren MR, et al. 2010. Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW-9595M increase IL-10 production by macrophages. J. Appl. Microbiol. 108: 666-675. https://doi.org/10.1111/j.1365-2672.2009.04450.x
- LaPointe G, Atlan D, Gilbert C. 2008. Characterization and sitedirected mutagenesis of Wzb, an O-phosphatase from Lactobacillus rhamnosus. BMC Biochem. 9: 10. https://doi.org/10.1186/1471-2091-9-10
- Dabour N, LaPointe G. 2005. Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461. Appl. Environ. Microbiol. 71: 7414-7425. https://doi.org/10.1128/AEM.71.11.7414-7425.2005
- Audy J, Labrie S, Roy D, LaPointe G. 2010. Sugar source modulates exopolysaccharide biosynthesis in Bifidobacterium longum subsp. longum CRC 002. Microbiology 156: 653-664. https://doi.org/10.1099/mic.0.033720-0
- Ogier J-C, Lafarge V, Girard V, Rault A, Maladen V, Gruss A, Leveau J-Y, et al. 2004. Molecular fingerprinting of dairy microbial ecosystems by use of temporal temperature and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 70: 5628-5643. https://doi.org/10.1128/AEM.70.9.5628-5643.2004
- Holo H, Nes IF. 1989. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 55: 3119-3123.
- Dubois M, Gilles K, Hamilton J, Rebers P, Smith F. 1951. A colorimetric method for the determination of sugars. Nature 168: 167.
- Chapot-Chartier M-P, Vinogradov E, Sadovskaya I, Andre G, Mistou M-Y, Trieu-Cuot P, et al. 2010. Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle. J. Biol. Chem. 285: 10464-10471. https://doi.org/10.1074/jbc.M109.082958
- Boels IC, van Kranenburg R, Kanning MW, Chong BF, de Vos WM, Kleerebezem M. 2003. Increased exopolysaccharide production in Lactococcus lactis due to increased levels of expression of the NIZO B40 eps gene cluster. Appl. Environ. Microbiol. 69: 5029-5031. https://doi.org/10.1128/AEM.69.8.5029-5031.2003
- Simon D, Chopin A. 1988. Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie 70: 559-566. https://doi.org/10.1016/0300-9084(88)90093-4
- Pham PL, Dupont I, Roy D, Lapointe G, Cerning J. 2000. Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl. Environ. Microbiol. 66: 2302-2310. https://doi.org/10.1128/AEM.66.6.2302-2310.2000
- Luesink EJ, Van Herpen RE, Grossiord BP, Kuipers OP, De Vos WM. 1998. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol. Microbiol. 30: 789-798. https://doi.org/10.1046/j.1365-2958.1998.01111.x
- Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, et al. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488: 178-184. https://doi.org/10.1038/nature11319
- Presecan-Siedel E, Galinier A, Longin R, Deutscher J, Danchin A, Glaser P, et al. 1999. Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. J. Bacteriol. 181: 6889-6897.
- Abdou L, Boileau C, de Philip P, Pages S, Fiérobe H-P, Tardif C. 2008. Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a cataboliteresponsive element. J. Bacteriol. 190: 1499-1506. https://doi.org/10.1128/JB.01160-07
- Stingele F, Vincent SJ, Faber EJ, Newell JW, Kamerling JP, Neeser JR. 1999. Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: production and characterization of an altered polysaccharide. Mol. Microbiol 32: 1287-1295. https://doi.org/10.1046/j.1365-2958.1999.01441.x
- Nierop Groot MN, Kleerebezem M. 2007. Mutational analysis of the Lactococcus lactis NIZO B40 exopolysaccharide (EPS) gene cluster: EPS biosynthesis correlates with unphosphorylated EpsB. J. Appl. Microbiol. 103: 2645-2656. https://doi.org/10.1111/j.1365-2672.2007.03516.x
- Kang H-J, Gilbert C, Badeaux F, Atlan D, LaPointe G. 2015. A tyrosine phosphorylation switch controls the interaction between the transmembrane modulator protein Wzd and the tyrosine kinase Wze of Lactobacillus rhamnosus. BMC Microbiol. 15: 40. https://doi.org/10.1186/s12866-015-0371-2
- Bender M, Yother J. 2001. CpsB is a modulator of capsule-associated tyrosine kinase activity in Streptococcus pneumoniae. J. Biol. Chem. 276: 47966-47974. https://doi.org/10.1074/jbc.M105448200
- Morona JK, Paton JC, Miller DC, Morona R. 2000. Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol. Microbiol. 35: 1431-1442.
- Gasson MJ. 1983. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 154: 1-9.
- Platteeuw C, Simons G, De Vos W. 1994. Use of the Escherichia coli beta-glucuronidase (gusA) gene as a reporter gene for analyzing promoters in lactic acid bacteria. Appl. Environ. Microbiol. 60: 587-593.
- van de Guchte M, Van der Vossen J, Kok J, Venema G. 1989. Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 55: 224-228.