DOI QR코드

DOI QR Code

이론적 방법과 유한요소해석이 융합된 커팅용 공구 혼의 설계에 관한 연구

A Study on the Design of Tool Horn for Cutting Converged with Theoretical Method and FEA

  • 이한창 (영남이공대학교 기계공학과) ;
  • 정진혁 (영남이공대학교 기계공학과) ;
  • 박충우 (영남이공대학교 기계공학과) ;
  • 오명석 (영남이공대학교 기계공학과) ;
  • 박명규 (영남이공대학교 기계공학과) ;
  • 이봉구 (영남이공대학교 기계공학과) ;
  • 김창환 (영남이공대학교 기계공학과)
  • Lee, Han-Chang (Department of Mechanical Engineering, Yeungnam University College) ;
  • Jeong, Jin-Hyuk (Department of Mechanical Engineering, Yeungnam University College) ;
  • Park, Chung-Woo (Department of Mechanical Engineering, Yeungnam University College) ;
  • Oh, Myung-Seok (Department of Mechanical Engineering, Yeungnam University College) ;
  • Park, Myung-Kyu (Department of Mechanical Engineering, Yeungnam University College) ;
  • Lee, Bong-Gu (Department of Mechanical Engineering, Yeungnam University College) ;
  • Kim, Chang-Hwan (Department of Mechanical Engineering, Yeungnam University College)
  • 투고 : 2018.03.14
  • 심사 : 2018.06.20
  • 발행 : 2018.06.28

초록

본 연구에서는 초음파 진동에너지가 융합된 커팅기용 공구 혼 제작에 대한 기초 연구 자료를 제작하고자 이론적방법과 유한요소해석을 병행하여 설계하였다. 고 성능의 초음파 절단을 진행하기 위해서는 횡진동이 아닌 종진동으로만 진동해야 하며, 기계적 진동에너지를 효율적으로 전달하기 위해 출력부에 최대진폭이 발생해야 한다. 따라서 공구 혼은 발진기의 가진 주파수와 공구 혼의 고유주파수가 동일하게 설계되어야만 한다. 공구 혼을 공진설계하기 위해서는 1차원 파동방정식을 이용한 이론적 접근법과, 유한요소 해석결과를 설계모델에 반영하는 방법이 있는데, 본 연구에서는 최초에 공구 혼의 대략적인 치수를 1차원 파동방정식을 통해 결정하고, 유한요소 해석 결과를 바탕으로 최적 모델을 선정하여 공구 혼의 최종 형상에 반영하였다. 이와 같은 내용을 실제 커팅용 공구 혼의 기초자료로 활용하고자 하며, 추후 제작 및 실험 데이터를 본 연구내용과 비교할 예정이다.

In this study, the theoretical method and the finite element analysis were designed in parallel to fabricate basic research data on the production of tool horn for cutting machine with ultrasonic vibration energy. In order to perform high-performance ultrasonic cutting, it is necessary to vibrate only with longitudinal vibration instead of transverse vibration. In order to efficiently transmit the mechanical vibration energy, the maximum amplitude should be generated at the output portion. Therefore, the tool horn must be designed so that the excitation frequency of the oscillator and the natural frequency of the tool horn are the same. In order to design the resonance of the tool horn, there are a theoretical approach using the one-dimensional wave equation and a method of reflecting the finite element analysis result to the design model. In this study, the approximate dimensions of the tool horn are first determined through the one- Based on the results of the finite element analysis, the optimal model was selected and reflected in the final shape of the tool horn. We will use this information as the basic data of actual tool horn for cutting, and will compare the production and experimental data with the contents of this research.

키워드

참고문헌

  1. B. G. Lee, K. L. Kim & K. E. Kim. (2008). Design of Ultrasonic Vibration Tool Horn for Micromachining Using FEM. Transactions of the Korean Society of Machine Tool Engineers, 17(6), 63-70.
  2. Y. S. Seo & K. Park. (2010). Design and Analysis of an Ultrasonic Tool Horn for Direct Pattern Forming. Journal of the Korean Society for Precision Engineering, 609-610.
  3. J. S. Seo, Y. J. Lee, J. W. Kim & D. S. Park. (2013). Design Improvement and Performance Evaluation of 20kHz Horn for Ultrasonic Cutting. Journal of the Korean Society of Manufacturing Process Engineers, 12(5), 135-140.
  4. J. S. Seo, Y. J. Lee, S. Y. Beak & D. S. Park. (2012). Prediction of Crack Initiation and Design of 40kHz Blade Horn for Ultrasonic Cutting. Journal of the Korean Society of Manufacturing Technology Engineers, 21(5), 784-789. https://doi.org/10.7735/ksmte.2012.21.5.784
  5. W. Y. Park, H. S. Jang, J. H. Kim & D. S. Park. (2012). Design of Tool for Food Cutting with Ultrasonic Waves. Journal of the Korean Society of Manufacturing Process Engineers, 11(3), 80-85.
  6. J. S. Seo. (2009). Design for Optimal Horn using Analysis system of Ultrasonic vibration frequency, Journal of the Korean Society of Manufacturing Technology Engineers, 256-260.
  7. Y. S. Seo & K. Park. (2011). Finite Element Analysis of an Ultrasonic Tool Horn for Pattern Forming, Journal of the Korean Society for Precision Engineering, 28(3), 363-369.
  8. K. H. Lee & B. M. Kim. (2010). Design and Manufacture of Ultrasonic Vibration Drawing Tool, Transactions of Materials Processing, 19(6), 363-371. https://doi.org/10.5228/KSTP.2010.19.6.363
  9. E. M. Kim, H. S. Jang, S. A. Kim, J. S. Seo & D. S. Park. (2010). A study on Vibration Analysis and shape design of Ultrasonic metal welding Tool Horn, Society for Computational Design and Engineering, 520-523.
  10. H. C. Lee, et al. (2017). A Study on Resonance Design Technique of Tool Horn for Ultrasonic Cutting Machine, Journal of the Korea Academia-Industrial cooperation Society, 225-227.
  11. K. E. Kim, B. G. Lee & S. J. Choi. (2016). Modal Analysis of an Ultrasonic Tool Horn for RFID TAG Micro-pattern Forming, Journal of the Korea Academia-Industrial cooperation Society, 17(12), 652-658. https://doi.org/10.5762/KAIS.2016.17.12.652
  12. K. W. Kang. (2014). Vibration Fatigue Analysis of Spot Welded Component considering Change of Stiffness due to Fatigue Damage, Journal of the Korea Convergence Society, 5(1), 1-8. https://doi.org/10.15207/JKCS.2014.5.1.001
  13. B. G. Lee, M. S. Oh & J. B. Ma. (2013). Design of Ultrasonic Tool Horn for Wire Wedge Bonding, Journal of the Korean Society of Manufacturing Technology Engineers, 22(4), 717-722. https://doi.org/10.7735/ksmte.2013.22.4.717
  14. J. S. Seo, S. M. Jang & S. Y. Beck. (2012). One-wavelength Ultrasonic Horn Design for Ultrasonic Machining of Mobile Phone Battery Terminal Welding, Journal of the Korean Society of Manufacturing Technology Engineers, 21(1), 70-75. https://doi.org/10.7735/ksmte.2012.21.1.070
  15. H. S. Jang, W. Y. Park & D. S. Park. (2011). Design and analysis of Ultrasonic metal welding tool horn, Journal of the Korean Society of Manufacturing Technology Engineers, 1232-1236.