• Title/Summary/Keyword: Resonance Design

Search Result 1,316, Processing Time 0.027 seconds

Validation of Practical Applicability of Pseudo-resonance Method for Seismic Design of Substation Equipment (변전설비 내진설계를 위한 유사공진법의 적용성 검증)

  • 조양희;조성국;박형기;권경일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.49-57
    • /
    • 2003
  • Lately, a guideline for seismic design of electric substation facilities has been newly prepared and issued. The guideline adopts a new simplified dynamic analysis technique called "pseudo-resonance method" from the design code of Japan. The method can effectively consider resonance effect of structural system during earthquake motion. However, reliability and practical applicability of the method have not been fully guaranteed under the different seismic and engineering situations in Korea. This paper presents a validation study of the pseudo-resonance method for practical seismic analysis. For this purpose, various parametric studies have been performed using recorded earthquake motions and idealized substation equipment models. The results showed that the pseudo-resonance method can be effectively used for the practical seismic design of substation facilities in Korea.

  • PDF

Fluid-Structure Interaction (FSI) Modal Analysis to Avoid Resonance of Cylinder Type Vertical Pump at Power Plant (원통형 수직 펌프의 공진회피를 위한 접수진동해석)

  • Lee, Jae-Hwan;Wang, Ji-Teng;Maring, Kothilngam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.321-329
    • /
    • 2018
  • Resonance phenomena occurs at large vertical pump which is operating to cool down the hot steam using sea water in the power plant. To avoid the resonance, the natural frequency needs to be isolated about 20% from motor operating speed. Yet, excessive vibration occurs especially at low tide. At first, natural frequency of the whole pump system and each part is calculated using ANSYS. As it is revealed in the previous journal papers that only circular pipe part is related to resonance, the FSI technique is applied for free vibration analysis. The natural frequency is reduced to 60% (compared to that) of the frequency measured in air as it is similar to other published results. And the frequency obtained by finite element analysis is almost same to that obtained from modal test. Based on the accurate finite element model and analysis, design change is tried to avoid the resonance by changing the thickness of pipe and base supporting plate. In stead of doing optimization process, design sensitivity is computed and used to find such designs to avoid resonance.

Development of Vibration Analysis Program for Anti-resonance Design of Vertical-axis Tidal Current Turbine (조류발전용 수직축 터빈의 공진 회피 설계를 위한 프로그램 개발)

  • Bae, Jae-Han;Seong, Hye-Min;Cho, Dae-Seung;Kim, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.336-341
    • /
    • 2012
  • The vertical-axis tidal current turbine (VAT) consisting of blades, struts to support blades, shaft, generator and so forth requires anti-resonance design against fluid fluctuation forces generated on blades to ensure its stable operation. In this study, a free vibration analysis program based on the finite element method is developed for efficient anti-resonance design of VAT in the preliminary design stage. In the finite element modeling, the VAT structure components are regarded as beam elements. Added masses due to the fluid and structure interaction of VAT evaluated by empirical formulas are considered as lumped mass elements. In addition, input parameters required for the analysis can be automatically prepared from the principal dimensions of VAT to make anti-resonance design more convenient. The validity of applied methods is verified by the comparison of the numerical results obtained from MSC/Nastran and the developed program for two VAT models.

  • PDF

A Wide-band Multi-layer Antenna Design using Double Resonance (이중공진을 사용한 적층기판용 광대역 안테나 설계)

  • Lee, Kook-Joo;Zhang, Mei-Shan;Lee, Jung-Aun;Han, Myeong-Woo;Kim, Moon-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.431-434
    • /
    • 2011
  • In this paper, bandwidth enhanced design of dielectric resonator antenna fabricated in multi-layer substrate is introduced. The proposed dielectric resonator antenna is operating with fundamental TE101 mode and higher-order TM111 mode. Each resonance frequency is dependent on resonator dimensions. As increasing the height of radiating aperture, the higher-order TM111 mode resonance frequency approach the fundamental TE101 mode resonance frequency and the antenna bandwidth increase by double resonance. Three different aperture height size antennas that operated at 7GHz are fabricated in FR4 multi-layer substrate. Measured 10 dB matching bandwidth is 8 percent for single resonace antenna and 18 percent for double resonance antenna.

Integrated Circuit(IC) Package Analysis, Modeling, and Design for Resonance Reduction (공진현상 감소를 위한 집적회로 패키지 설계 및 모델링)

  • 안덕근;어영선;심종인
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.133-136
    • /
    • 2001
  • A new package design method to reduce resonance effect due to an IC package is represented. Frequency-variant circuit model of the power/ground plane was developed to accurately reflect the resonance. The circuit model is benchmarked with a full wave simulation, thereby verifying its accuracy. Then it was shown that the proposed technique can efficiently reduce the resonance due to the IC package.

  • PDF

Design Enhancement to Avoid Radar Mast Resonance in Large Ship using Design of Experiments (실험계획법을 이용한 대형 선박용 레이더 마스트의 공진회피 설계)

  • Park, Jun Hyeong;Lee, Daeyong;Yang, Jung-Wook;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.50-60
    • /
    • 2019
  • Recently, problems with excessive vibration of the radar masts of large bulk carriers and crude oil tankers have frequently been reported. This paper explores a design method to avoid the resonance of a radar mast installed on a large ship using various design of experiment (DOE) methods. A local vibration test was performed during an actual sea trial to determine the excitation sources of the vibration related to the resonant frequency of the radar mast. DOE methods such as the orthogonal array (OA) and Latin hypercube design (LHD) methods were used to analyze the Pareto effects on the radar mast vibration. In these DOE methods, the main vibration performances such as the natural frequency and weight of the radar mast were set as responses, while the shape and thickness of the main structural members of the radar mast were set as design factors. From the DOE-based Pareto effect results, we selected the significant structural members with the greatest influence on the vibration characteristics of the radar mast. Full factorial design (FFD) was applied to verify the Pareto effect results of the OA and LHD methods. The design of the main structural members of the radar mast to avoid resonance was reviewed, and a normal mode analysis was performed for each design using the finite element method. Based on the results of this normal mode analysis, we selected a design case that could avoid the resonance from the major excitation sources. In addition, a modal test was performed on the determined design to verify the normal mode analysis results.

Vibration Analyses and Design of Resonance Avoidance of the Unmanned Helicopter Master (무인 헬리콥터 마스터의 진동해석 및 공진회피 설계)

  • Lee, Seong-Chul;Son, In-Soo;Hur, Kwan-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.951-958
    • /
    • 2011
  • In this paper, the purpose is to investigate the vibration characteristics and the design of resonance avoidance of the unmanned helicopter master. Based on the Euler-Bernoulli beam theory for helicopter master, the equation of motion is derived by using extended Hamilton's principle. It was studied about the natural frequency of helicopter master as the design variances(tip mass, length and diameter of master). Also, it was compared the theoretical results for natural frequency with the results of FE analysis. The results of this study showed the vibration characteristics of helicopter master for the design of resonance avoidance.

The Study of Reduction Technologies of Tire Cavity Resonance Noise (타이어 공명 소음(Tire Cavity Resonance Noise) 저감에 관한 연구)

  • Bang, M.J.;Choi, S.I.;Choo, K.C.;Lee, H.J.;Son, C.E.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.596-599
    • /
    • 2008
  • Traditionally, tire made a role of function, which is supporting vehicle load, making brake, transferring traction, etc. But tire is a part of vehicle design, nowadays. In accordance with this market trend, customers need a wide tread design tire (i.e. low series tire). Generally low Series Tire means stiffer than general tire. That brings out increasing road noise. (Especially tire cavity resonance noise) Tire noise is divided in structure home noise and air borne noise. Tire cavity resonance noise (structure home noise) come from vibration between tire and vehicle. In the study, we investigated that tire cavity resonance noise is affected by stiffness of tread and sidewall.

  • PDF

Design of multi-layered surface plasmon resonance sensors using optical admittance method and evolution algorithm (광학 어드미턴스 기법과 진화 알고리즘 기법을 이용한 다층 표면 플라즈몬 공명 센서의 설계)

  • Jung, Jae-Hoon;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.402-408
    • /
    • 2005
  • This paper describes the optimal design of a multi-layered surface plasmon resonance sensors to meet various specifications and improve some physical parameters. Dip 3 dB bandwidth and depth were chosen as design parameters and the objective function was the norm of the difference between design parameters and target values. The design variables are thicknesses of each layer and to obtain the design parameters, the optical admittance method was employed. The (1+1) evolution strategy was employed as an optimization tool. By applying the proposed optimization procedure to a 3-layered sensor, the optimized design variables considerably improved the 3 dB bandwidth by 4.8 nm and the dip depth by 1.1 dB.

The influence of transom pipe gap on the resonance response in motorized bogie and traction motor system (트랜섬 파이프 간격이 동력대차-견인전동기간 강체 모드 공진응답에 미치는 영향에 관한 연구)

  • Kim, Jaehwan;Song, Seeyeop;Lim, Hyosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.340-343
    • /
    • 2019
  • In this paper, a problem of mechanical resonance between traction motor's rigid body mode and traction motor's excitation force is introduced, and a bogie design variable affecting the control of resonance response is reviewed numerically. To solve the resonance problem in rotating machinery with variable rotational speeds, resonance frequency should be out of rotational machine's operation range or dynamic stiffness of structures should be increased for resonance response enough to be low. In general, operation range of a traction motor is from 0 r/min to 4800 r/min. It is not possible that all bogie modes are more than 80 Hz. Therefore, it is very important to find design factor affecting resonance response of traction motor's rigid body modes. It is found that key design variable is the gab between transom pipes from finite element analysis. The larger gab is, the higher resonance response when resonance between traction motor's excitation force and traction motor's rigid body mode is happened.