References
- Abarca, C., Albrecht, U. and Spanagel, R. (2002) Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc. Natl. Acad. Sci. U.S.A. 99, 9026-9030. https://doi.org/10.1073/pnas.142039099
- Agostino, P. and Cheng, R. (2016) Contributions of dopaminergic signaling to timing accuracy and precision. Curr. Opin. Behav. Sci. 8, 153-160. https://doi.org/10.1016/j.cobeha.2016.02.013
- Akhisaroglu, M., Kurtuncu, M., Manev, H. and Uz, T. (2005) Diurnal rhythms in quinpirole-induced locomotor behaviors and striatal D2/D3 receptor levels in mice. Pharmacol. Biochem. Behav. 80, 371-377. https://doi.org/10.1016/j.pbb.2004.11.016
- Albrecht, U. (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74, 246-260. https://doi.org/10.1016/j.neuron.2012.04.006
- Albrecht, U., Sun, Z., Eichele, G. and Lee, C. (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91, 1055-1064. https://doi.org/10.1016/S0092-8674(00)80495-X
- Albrecht, U., Zheng, B., Larkin, D., Sun, Z. and Lee, C. (2001) MPer1 and mper2 are essential for normal resetting of the circadian clock. J. Biol. Rhythms 16, 100-104. https://doi.org/10.1177/074873001129001791
- Amir, S. and Stewart, J. (2009) Motivational modulation of rhythms of the expression of the clock protein PER2 in the limbic forebrain. Biol. Psychiatry 65, 829-834. https://doi.org/10.1016/j.biopsych.2008.12.019
- Andretic, R. and Hirsh, J. (2000) Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 97, 1873-1878. https://doi.org/10.1073/pnas.97.4.1873
-
Arjona, A. and Sarkar, D. (2006) Short communication: The circadian gene mPer2 regulates the daily rhythm of IFN-
${\gamma}$ . J. Interferon Cytokine Res. 26, 645-649. https://doi.org/10.1089/jir.2006.26.645 - Aton, S. J., Huettner, J. E., Straume, M. and Herzog, E. D. (2006) GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons. Proc. Natl. Acad. Sci. U.S.A. 103, 19188-19193. https://doi.org/10.1073/pnas.0607466103
- Bae, K., Jin, X., Maywood, E. S., Hastings, M. H., Reppert, S. M. and Weaver, D. R. (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30, 525-536. https://doi.org/10.1016/S0896-6273(01)00302-6
- Bae, K. and Weaver, D. R. (2003) Light-induced phase shifts in mice lacking mPER1 or mPER2. J. Biol. Rhythms 18, 123-133. https://doi.org/10.1177/0748730403252248
- Baird, A., Coogan, A., Siddiqui, A., Donev, R. and Thome, J. (2012) Adult attention-deficit hyperactivity disorder is associated with alterations in circadian rhythms at the behavioural, endocrine and molecular levels. Mol. Psychiatry 17, 988-995. https://doi.org/10.1038/mp.2011.149
- Beaule, C., Swanstrom, A., Leone, M. and Herzog, E. D. (2009) Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes. PLoS ONE 4, e7476. https://doi.org/10.1371/journal.pone.0007476
- Bellet, M. M., Vawter, M. P., Bunney, B. G., Bunney, W. E. and Sassone-Corsi, P. (2011) Ketamine influences CLOCK: BMAL1 function leading to altered circadian gene expression. PLoS ONE 6, e23982. https://doi.org/10.1371/journal.pone.0023982
- Besharse, J. C., Zhuang, M., Freeman, K. and Fogerty, J. (2004) Regulation of photoreceptor Per1 and Per2 by light, dopamine and a circadian clock. Eur. J. Neurosci. 20, 167-174. https://doi.org/10.1111/j.1460-9568.2004.03479.x
- Blomeyer, D., Buchmann, A. F., Lascorz, J., Zimmermann, U. S., Esser, G., Desrivieres, S., Schmidt, M. H., Banaschewski, T., Schumann, G. and Laucht, M. (2013) Association of PER2 genotype and stressful life events with alcohol drinking in young adults. PLoS ONE 8, e59136. https://doi.org/10.1371/journal.pone.0059136
- Brager, A., Prosser, R. A. and Glass, J. D. (2011a) Acamprosate-responsive brain sites for suppression of ethanol intake and preference. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1032-R1043. https://doi.org/10.1152/ajpregu.00179.2011
- Brager, A., Prosser, R. A. and Glass, J. D. (2011b) Circadian and acamprosate modulation of elevated ethanol drinking in mPer2 clock gene mutant mice. Chronobiol. Int. 28, 664-672. https://doi.org/10.3109/07420528.2011.601968
- Brager, A., Stowie, A. C., Prosser, R. A. and Glass, J. D. (2013) The mPer2 clock gene modulates cocaine actions in the mouse circadian system. Behav. Brain Res. 243, 255-260. https://doi.org/10.1016/j.bbr.2013.01.014
- Breen, D. P., Vuono, R., Nawarathna, U., Fisher, K., Shneerson, J. M., Reddy, A. B. and Barker, R. A. (2014) Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol. 71, 589-595. https://doi.org/10.1001/jamaneurol.2014.65
- Brown, S. A., Ripperger, J., Kadener, S., Fleury-Olela, F., Vilbois, F., Rosbash, M. and Schibler, U. (2005) PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308, 693-696. https://doi.org/10.1126/science.1107373
- Bussi, I. L., Levin, G., Golombek, D. A. and Agostino, P. V. (2014) Involvement of dopamine signaling in the circadian modulation of interval timing. Eur. J. Neurosci. 40, 2299-2310. https://doi.org/10.1111/ejn.12569
- Caldelas, I., Challet, E., Saboureau, M. and Pevet, P. (2005) Light and melatonin inhibit in vivo serotonergic phase advances without altering serotonergic-induced decrease of per expression in the hamster suprachiasmatic nucleus. J. Mol. Neurosci. 25, 53-63. https://doi.org/10.1385/JMN:25:1:053
- Castaneda, T. R., Prado, B. M., Prieto, D. and Mora, F. (2004) Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J. Pineal Res. 36, 177-185. https://doi.org/10.1046/j.1600-079X.2003.00114.x
- Cermakian, N., Lamont, E. W., Boudreau, P. and Boivin, D. B. (2011) Circadian clock gene expression in brain regions of Alzheimer's disease patients and control subjects. J. Biol. Rhythms 26, 160-170. https://doi.org/10.1177/0748730410395732
- Challet, E. (2007) Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148, 5648-5655. https://doi.org/10.1210/en.2007-0804
- Chun, S. K., Jang, J., Chung, S., Yun, H., Kim, N. J., Jung, J. W., Son, G. H., Suh, Y. G. and Kim, K. (2014) Identification and validation of cryptochrome inhibitors that modulate the molecular circadian clock. ACS Chem. Biol. 9, 703-710. https://doi.org/10.1021/cb400752k
-
Chung, S., Lee, E. J., Yun, S., Choe, H. K., Park, S. B., Son, H. J., Kim, K. S., Dluzen, D. E., Lee, I., Hwang, O., Son, G. H. and Kim, K. (2014) Impact of circadian nuclear receptor REV-
$ERB{\alpha}$ on midbrain dopamine production and mood regulation. Cell 157, 858-868. https://doi.org/10.1016/j.cell.2014.03.039 - Comasco, E., Nordquist, N., Gokturk, C., Aslund, C., Hallman, J., Oreland, L. and Nilsson, K. W. (2010) The clock gene PER2 and sleep problems: association with alcohol consumption among Swedish adolescents. Ups. J. Med. Sci. 115, 41-48. https://doi.org/10.3109/03009731003597127
- Cuesta, M., Clesse, D., Pevet, P. and Challet, E. (2009) New light on the serotonergic paradox in the rat circadian system. J. Neurochem. 110, 231-243. https://doi.org/10.1111/j.1471-4159.2009.06128.x
- Curie, T., Maret, S., Emmenegger, Y. and Franken, P. (2015) In vivo imaging of the central and peripheral effects of sleep deprivation and suprachiasmatic nuclei lesion on PERIOD-2 protein in mice. Sleep 38, 1381-1394. https://doi.org/10.5665/sleep.4974
- Curie, T., Mongrain, V., Dorsaz, S., Mang, G. M., Emmenegger, Y. and Franken, P. (2013) Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. Sleep 36, 311-323. https://doi.org/10.5665/sleep.2440
- dela Pena, I., de la Pena, J. B., Kim, B. N., Han, D. H., Noh, M. and Cheong, J. H. (2015) Gene expression profiling in the striatum of amphetamine-treated spontaneously hypertensive rats which showed amphetamine conditioned place preference and self-administration. Arch. Pharm. Res. 38, 865-875. https://doi.org/10.1007/s12272-014-0470-x
- dela Pena, I., Lee, J. C., Lee, H. L. Woo, T. S., Lee, H. C., Sohn, A. R. and Cheong, J. H. (2012a) Differential behavioral responses of the spontaneously hypertensive rat to methylphenidate and methamphetamine: lack of a rewarding effect of repeated methylphenidate treatment. Neurosci. Lett. 514, 189-193. https://doi.org/10.1016/j.neulet.2012.02.090
- dela Pena, I., Yoon, S. Y., Lee, J. C., dela Pena, J. B., Sohn, A. R., Ryu, J. H., Shin, C. Y. and Cheong, J. H. (2012b) Methylphenidate treatment in the spontaneously hypertensive rat: influence on methylphenidate self-administration and reinstatement in comparison with Wistar rats. Psychopharmacology (Berl.) 221, 217-226. https://doi.org/10.1007/s00213-011-2564-1
- DeWoskin, D., Myung, J., Belle, M. D., Piggins, H. D., Takumi, T. and Forger, D. B. (2015) Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping. Proc. Natl. Acad. Sci. U.S.A. 112, E3911-E3919. https://doi.org/10.1073/pnas.1420753112
- Duncan, M. J., Smith, J. T., Franklin, K. M., Beckett, T. L., Murphy, M. P., St Clair, D. K., Donohue, K. D., Striz, M. and O'hara, B. F. (2012) Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a model for Alzheimer's disease. Exp. Neurol. 236, 249-258. https://doi.org/10.1016/j.expneurol.2012.05.011
- Ebisawa, T. (2007) Circadian rhythms in the CNS and peripheral clock disorders: human sleep disorders and clock genes. J. Pharmacol. Sci. 103, 150-154. https://doi.org/10.1254/jphs.FMJ06003X5
-
Ehlen, J. C., Novak, C. M., Karom, M. C., Gamble, K. L., Paul, K. N. and Albers, H. E. (2006)
$GABA_A$ receptor activation suppresses Period 1 mRNA and Period 2 mRNA in the suprachiasmatic nucleus during the mid-subjective day. Eur. J. Neurosci. 23, 3328-3336. https://doi.org/10.1111/j.1460-9568.2006.04857.x -
Eide, E. J., Woolf, M. F., Kang, H., Woolf, P., Hurst, W., Camacho, F., Vielhaber, E. L., Giovanni, A. and Virshup, D. M. (2005) Control of mammalian circadian rhythm by
$CKI{\varepsilon}$ -regulated proteasome-mediated PER2 degradation. Mol. Cell. Biol. 25, 2795-2807. https://doi.org/10.1128/MCB.25.7.2795-2807.2005 - Feillet, C. A., Ripperger, J. A., Magnone, M. C., Dulloo, A., Albrecht, U. and Challet, E. (2006) Lack of food anticipation in Per2 mutant mice. Curr. Biol. 16, 2016-2022. https://doi.org/10.1016/j.cub.2006.08.053
- Franken, P., Thomason, R., Heller, H. C. and O'Hara, B. F. (2007) A non-circadian role for clock-genes in sleep homeostasis: a strain comparison. BMC Neurosci. 8, 87. https://doi.org/10.1186/1471-2202-8-87
- Gallardo, C. M., Darvas, M., Oviatt, M., Chang, C. H., Michalik, M., Huddy, T. F., Meyer, E. E., Shuster, S. A., Aguayo, A., Hill, E. M., Kiani, K., Ikpeazu, J., Martinez, J. S., Purpura, M., Smit, A. N., Patton, D. F., Mistlberger, R. E., Palmiter, R. D. and Steele, A. D. (2014) Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice. Elife 3, e03781.
- Gamsby, J., Templeton, E., Bonvini, L., Wang, W., Loros, J., Dunlap, J., Green, A. and Gulick, D. (2013) The circadian Per1 and Per2 genes influence alcohol intake, reinforcement, and blood alcohol levels. Behav. Brain Res. 249, 15-21. https://doi.org/10.1016/j.bbr.2013.04.016
- Garmabi, B., Vousooghi, N., Vosough, M., Yoonessi, A., Bakhtazad, A. and Zarrindast, M. (2016) Effect of circadian rhythm disturbance on morphine preference and addiction in male rats: Involvement of period genes and dopamine D1 receptor. Neuroscience 322, 104-114. https://doi.org/10.1016/j.neuroscience.2016.02.019
- Gekakis, N., Staknis, D., Nguyen, H. B., Davis, F. C., Wilsbacher, L. D., King, D. P., Takahashi, J. S. and Weitz, C. J. (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564-1569. https://doi.org/10.1126/science.280.5369.1564
- Gravotta, L., Gavrila, A. M., Hood, S. and Amir, S. (2011) Global depletion of dopamine using intracerebroventricular 6-hydroxydopamine injection disrupts normal circadian wheel-running patterns and PERIOD2 expression in the rat forebrain. J. Mol. Neurosci. 45, 162-171. https://doi.org/10.1007/s12031-011-9520-8
-
Grimaldi, B., Bellet, M. M., Katada, S., Astarita, G., Hirayama, J., Amin, R. H., Granneman, J. G., Piomelli, D., Leff, T. and Sassone-Corsi, P. (2010) PER2 controls lipid metabolism by direct regulation of
$PPAR{\gamma}$ . Cell Metab. 12, 509-520. https://doi.org/10.1016/j.cmet.2010.10.005 - Guo, H., Brewer, J. M., Lehman, M. N. and Bittman, E. L. (2006) Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J. Neurosci. 26, 6406-6412. https://doi.org/10.1523/JNEUROSCI.4676-05.2006
- Hampp, G. and Albrecht, U. (2008) The circadian clock and mood-related behavior. Commun. Integr. Biol. 1, 1-3. https://doi.org/10.4161/cib.1.1.6286
- Hampp, G., Ripperger, J. A., Houben, T., Schmutz, I., Blex, C., Perreau-Lenz, S., Brunk, I., Spanagel, R., Ahnert-Hilger, G., Meijer, J. H. and Albrecht, U. (2008) Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr. Biol. 18, 678-683. https://doi.org/10.1016/j.cub.2008.04.012
- Hinton, D. J. (2016) Preclinical and clinical implications of adenosine and glutamate signaling in alcohol use disorder. Dissertation. College of Medicine-Mayo Clinic, Minnesota.
- Hirota, T. and Kay, S. A. (2009) High-throughput screening and chemical biology: new approaches for understanding circadian clock mechanisms. Chem. Biol. 16, 921-927. https://doi.org/10.1016/j.chembiol.2009.09.002
- Hood, S., Cassidy, P., Cossette, M. P., Weigl, Y., Verwey, M., Robinson, B., Stewart, J. and Amir, S. (2010) Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J. Neurosci. 30, 14046-14058. https://doi.org/10.1523/JNEUROSCI.2128-10.2010
- Horikawa, K., Yokota, S., Fuji, K., Akiyama, M., Moriya, T., Okamura, H. and Shibata, S. (2000) Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei. J. Neurosci. 20, 5867-5873. https://doi.org/10.1523/JNEUROSCI.20-15-05867.2000
- Jiang, W. G., Li, S. X., Zhou, S. J., Sun, Y., Shi, J. and Lu, L., (2011) Chronic unpredictable stress induces a reversible change of PER2 rhythm in the suprachiasmatic nucleus. Brain Res. 1399, 25-32. https://doi.org/10.1016/j.brainres.2011.05.001
- Jin, X., Shearman, L. P., Weaver, D. R., Zylka, M. J., de Vries, G. J. and Reppert, S. M. (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96, 57-68. https://doi.org/10.1016/S0092-8674(00)80959-9
- Johansson, C., Willeit, M., Smedh, C., Ekholm, J., Paunio, T., Kieseppa, T., Lichtermann, D., Praschak-Rieder, N., Neumeister, A., Nilsson, L. G., Kasper, S., Peltonen, L., Adolfsson, R., Schalling, M. and Partonen, T. (2003) Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 28, 734-739. https://doi.org/10.1038/sj.npp.1300121
- Kalsbeek, A., Foppen, E.,Schalij, I., Van Heijningen, C., van der Vliet, J., Fliers, E. and Buijs, R. M. (2008) Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS ONE 3, e3194. https://doi.org/10.1371/journal.pone.0003194
- Ko, C. H. and Takahashi, J. S. (2006) Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15, R271-R277. https://doi.org/10.1093/hmg/ddl207
- Kondratov, R. V., Chernov, M. V., Kondratova, A. A., Gorbacheva, V. Y., Gudkov, A. V. and Antoch, M. P. (2003) BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev. 17, 1921-1932. https://doi.org/10.1101/gad.1099503
- Konopka, R. J. and Benzer, S. (1971) Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 68, 2112-2116. https://doi.org/10.1073/pnas.68.9.2112
- Kopp, C., Albrecht, U., Zheng, B. and Tobler, I. (2002) Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur. J. Neurosci. 16, 1099-1106. https://doi.org/10.1046/j.1460-9568.2002.02156.x
- Kudo, T., Loh, D. H., Truong, D., Wu, Y. and Colwell, C. S. (2011a) Circadian dysfunction in a mouse model of Parkinson's disease. Exp. Neurol. 232, 66-75. https://doi.org/10.1016/j.expneurol.2011.08.003
- Kudo, T., Schroeder, A., Loh, D. H., Kuljis, D., Jordan, M. C., Roos, K. P. and Colwell, C. S. (2011b) Dysfunctions in circadian behavior and physiology in mouse models of Huntington's disease. Exp. Neurol. 228, 80-90. https://doi.org/10.1016/j.expneurol.2010.12.011
- Kume, K., Zylka, M. J., Sriram, S., Shearman, L. P., Weaver, D. R., Jin, X., Maywood, E. S., Hastings, M. H. and Reppert, S. M. (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193-205. https://doi.org/10.1016/S0092-8674(00)81014-4
- Kwon, I., Lee, J., Chang, S. H., Jung, N. C., Lee, B. J., Son, G. H., Kim, K. and Lee, K. H. (2006) BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer. Mol. Cell. Biol. 26, 7318-7330. https://doi.org/10.1128/MCB.00337-06
- Lamont, E. W., Diaz, L. R., Barry-Shaw, J., Stewart, J. and Amir, S. (2005) Daily restricted feeding rescues a rhythm of period2 expression in the arrhythmic suprachiasmatic nucleus. Neuroscience 132, 245-248. https://doi.org/10.1016/j.neuroscience.2005.01.029
- Lavebratt, C., Sjoholm, L. K., Partonen, T., Schalling, M. and Forsell, Y. (2010) PER2 variantion is associated with depression vulnerability. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 570-581. https://doi.org/10.1002/ajmg.b.31021
-
Lee, C., Weaver, D. R. and Reppert, S. M. (2004) Direct association between mouse PERIOD and
$CKI{\varepsilon}$ is critical for a functioning circadian clock. Mol.Cell.Biol. 24, 584-594. https://doi.org/10.1128/MCB.24.2.584-594.2004 - Lee, H., Chen, R., Kim, H., Etchegaray, J. P., Weaver, D. R. and Lee, C. (2011a) The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc. Natl. Acad. Sci. U.S.A. 108, 16451-16456. https://doi.org/10.1073/pnas.1107178108
- Lee, H. J., Kim, L., Kang, S. G., Yoon, H. K., Choi, J. E., Park, Y. M., Kim, S. J. and Kripke, D. F. (2011b) PER2 variation is associated with diurnal preference in a Korean young population. Behav. Genet. 41, 273-277. https://doi.org/10.1007/s10519-010-9396-3
- Lesch, K. P. (2004) Gene-environment interaction and the genetics of depression. J. Psychiatry Neurosci. 29, 174-184.
- Logan, R. W., Edgar, N., Gillman, A. G., Hoffman, D., Zhu, X. and Mc-Clung, C. A. (2015) Chronic stress induces brain region-specific alterations of molecular rhythms that correlate with depression-like behavior in mice. Biol. Psychiatry 78, 249-258. https://doi.org/10.1016/j.biopsych.2015.01.011
- Loh, D. H., Kudo, T., Truong, D., Wu, Y. and Colwell, C. S. (2013) The Q175 mouse model of Huntington's disease shows gene dosage- and age-related decline in circadian rhythms of activity and sleep. PLoS ONE 8, e69993. https://doi.org/10.1371/journal.pone.0069993
- Lowrey, P. L. and Takahashi, J. S. (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5, 407-441. https://doi.org/10.1146/annurev.genom.5.061903.175925
- Matsuo, I., Iijima, N., Takumi, K., Higo, S., Aikawa, S., Anzai, M., Ishii, H., Sakamoto, A. and Ozawa, H. (2016) Characterization of sevoflurane effects on Per2 expression using ex vivo bioluminescence imaging of the suprachiasmatic nucleus in transgenic rats. Neurosci. Res. 107, 30-37. https://doi.org/10.1016/j.neures.2015.11.010
- McClung, C. A. (2007a) Circadian genes, rhythms and the biology of mood disorders. Pharmacol. Ther. 114, 222-232. https://doi.org/10.1016/j.pharmthera.2007.02.003
- McClung, C. A. (2007b) Circadian rhythms, the mesolimbic dopaminergic circuit, and drug addiction. Scientific World Journal 7, 194-202. https://doi.org/10.1100/tsw.2007.213
-
McClung, C. A. and Nestler, E. J. (2003) Regulation of gene expression and cocaine reward by CREB and
${\Delta}FosB$ . Nat. Neurosci. 6, 1209-1215. - Mendoza, J., Albrecht, U. and Challet, E. (2010) Behavioural food anticipation in clock genes deficient mice: confirming old phenotypes, describing new phenotypes. Genes Brain Behav. 9, 467-477.
- Mendoza, J., Clesse, D., Pevet, P. and Challet, E. (2008) Serotonergic potentiation of dark pulse-induced phase-shifting effects at midday in hamsters. J. Neurochem. 106, 1404-1414. https://doi.org/10.1111/j.1471-4159.2008.05493.x
- Mieda, M., Williams, S. C., Richardson, J. A., Tanaka, K. and Yanagisawa, M. (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc. Natl. Acad. Sci. U.S.A. 103, 12150-12155. https://doi.org/10.1073/pnas.0604189103
- Mignot, E. and Takahashi, J. S. (2007) A circadian sleep disorder reveals a complex clock. Cell 128, 22-23. https://doi.org/10.1016/j.cell.2006.12.024
- Mistlberger, R. E. (1994) Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 18, 171-195. https://doi.org/10.1016/0149-7634(94)90023-X
- Miyazaki, K., Wakabayashi, M., Chikahisa, S., Sei, H. and Ishida, N. (2007) PER2 controls circadian periods through nuclear localization in the suprachiasmatic nucleus. Genes Cells 12, 1225-1234. https://doi.org/10.1111/j.1365-2443.2007.01129.x
- Mohawk, J. A., Green, C. B. and Takahashi, J. S. (2012) Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445-462. https://doi.org/10.1146/annurev-neuro-060909-153128
- Moriya, T., Horikawa, K., Akiyama, M. and Shibata, S. (2000) Correlative association between N-methyl-D-aspartate receptor-mediated expression of period genes in the suprachiasmatic nucleus and phase shifts in behavior with photic entrainment of clock in hamsters. Mol. Pharmacol. 58, 1554-1562. https://doi.org/10.1124/mol.58.6.1554
- Nagoshi, E., Saini, C., Bauer, C., Laroche, T., Naef, F. and Schibler, U. (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693-705. https://doi.org/10.1016/j.cell.2004.11.015
- Nielsen, H., Hannibal, J., Knudsen, S. and Fahrenkrug, J. (2001) Pituitary adenylate cyclase-activating polypeptide induces period1 and period2 gene expression in the rat suprachiasmatic nucleus during late night. Neuroscience 103, 433-441. https://doi.org/10.1016/S0306-4522(00)00563-7
-
Novak, C. M., Ehlen, J. C., Paul, K. N., Fukuhara, C. and Albers, H. E. (2006) Light and
$GABA_A$ receptor activation alter period mRNA levels in the SCN of diurnal Nile grass rats. Eur. J. Neurosci. 24, 2843-2852. https://doi.org/10.1111/j.1460-9568.2006.05166.x - Partonen, T., Treutlein, J., Alpman, A., Frank, J., Johansson, C., Depner, M., Aron, L., Rietschel, M., Wellek, S., Soronen, P., Paunio, T., Koch, A., Chen, P., Lathrop, M., Adolfsson, R., Persson, M. L., Kasper, S., Schalling, M., Peltonen, L. and Schumann, G. (2007) Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann. Med. 39, 229-238. https://doi.org/10.1080/07853890701278795
- Paul, K. N., Fukuhara, C., Karom, M., Tosini, G. and Albers, H. E. (2005) AMPA/kainate receptor antagonist DNQX blocks the acute increase of Per2 mRNA levels in most but not all areas of the SCN. Brain Res. Mol. Brain Res. 139, 129-136. https://doi.org/10.1016/j.molbrainres.2005.05.017
- Pendergast, J. S., Oda, G. A., Niswender, K. D. and Yamazaki, S. (2012) Period determination in the food-entrainable and methamphetamine-sensitive circadian oscillator(s). Proc. Natl. Acad. Sci. U.S.A. 109, 14218-14223. https://doi.org/10.1073/pnas.1206213109
- Pereira, P. A., Alvim-Soares, A., Bicalho, M. A., Moraes, E. N., Malloy-Diniz, L., Paula, J. J., Romano-Silva, M. A. and Miranda, D. M. (2016) Lack of association between genetic polymorphism of circadian genes (PER2, PER3, CLOCK and OX2R) with late onset depression and alzheimer's disease in a sample of a Brazilian population (circadian genes, late-onset depression and Alzheimer's disease). Curr. Alzheimer Res. 13, 1397-1406. https://doi.org/10.2174/1567205013666160603005630
- Perreau-Lenz, S., Sanchis-Segura, C., Leonardi-Essmann, F., Schneider, M. and Spanagel, R. (2010) Development of morphine-induced tolerance and withdrawal: involvement of the clock gene mPer2. Eur. Neuropsychopharmacol. 20, 509-517. https://doi.org/10.1016/j.euroneuro.2010.03.006
- Phillips, K. (2004) Serotonin's circadian rhythm. J. Exp. Biol. 207, i-ii.
- Quay, W. (1963) Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen. Comp. Endocrinol. 3, 473-479. https://doi.org/10.1016/0016-6480(63)90079-0
-
Ralph, M. R. and Menaker, M. (1989) GABA regulation of circadian responses to light. I. Involvement of
$GABA_A$ -benzodiazepine and$GABA_B$ receptors. J. Neurosci. 9, 2858-2865. https://doi.org/10.1523/JNEUROSCI.09-08-02858.1989 - Reick, M., Garcia, J. A., Dudley, C. and McKnight, S. L. (2001) NPAS2: an analog of clock operative in the mammalian forebrain. Science 293, 506-509. https://doi.org/10.1126/science.1060699
- Ripperger, J. A. and Albrecht, U. (2012) The circadian clock component PERIOD2: from molecular to cerebral functions. Prog. Brain Res. 199, 233-245.
- Ripperger, J. A., Jud, C. and Albrecht, U. (2011) The daily rhythm of mice. FEBS Lett. 585, 1384-1392. https://doi.org/10.1016/j.febslet.2011.02.027
- Ruan, G. X., Allen, G. C., Yamazaki, S. and McMahon, D. G. (2008) An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA. PLoS Biol. 6, e249. https://doi.org/10.1371/journal.pbio.0060249
-
Sahar, S., Zocchi, L., Kinoshita, C., Borrelli, E. and Sassone-Corsi, P. (2010) Regulation of BMAL1 protein stability and circadian function by
$GSK3{\beta}$ -mediated phosphorylation. PLoS ONE 5, e8561. https://doi.org/10.1371/journal.pone.0008561 - Salamone, J. D., Correa, M., Mingote, S. and Weber, S. (2003) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J. Pharmacol. Exp. Ther. 305, 1-8. https://doi.org/10.1124/jpet.102.035063
- Schmutz, I., Ripperger, J. A., Baeriswyl-Aebischer, S. and Albrecht, U. (2010) The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24, 345-357. https://doi.org/10.1101/gad.564110
- Shearman, L. P., Sriram, S., Weaver, D. R., Maywood, E. S., Chaves, I., Zheng, B., Kume, K., Lee, C. C., van der Horst, G. T., Hastings, M. H. and Reppert, S. M. (2000) Interacting molecular loops in the mammalian circadian clock. Science 288, 1013-1019. https://doi.org/10.1126/science.288.5468.1013
- Shumay, E., Fowler, J., Wang, G., Logan, J., Alia-Klein, N., Goldstein, R., Maloney, T., Wong, C. and Volkow, N. (2012) Repeat variation in the human PER2 gene as a new genetic marker associated with cocaine addiction and brain dopamine D2 receptor availability. Transl. Psychiatry 2, e86. https://doi.org/10.1038/tp.2012.11
- Simerly, R. (2006) Feeding signals and drugs meet in the midbrain. Nat. Med. 12, 1244-1246. https://doi.org/10.1038/nm1106-1244
- Sleipness, E. P., Sorg, B. A. and Jansen, H. T. (2007) Diurnal differences in dopamine transporter and tyrosine hydroxylase levels in rat brain: dependence on the suprachiasmatic nucleus. Brain Res. 1129, 34-42. https://doi.org/10.1016/j.brainres.2006.10.063
- Snyder, S. H., Zweig, M., Axelrod, J. and Fischer, J. E. (1965) Control of the circadian rhythm in serotonin content of the rat pineal gland. Proc. Natl. Acad. Sci. U.S.A. 53, 301-305. https://doi.org/10.1073/pnas.53.2.301
- Solt, L. A., Wang, Y., Banerjee, S., Hughes, T., Kojetin, D. J., Lundasen, T., Shin, Y., Liu, J., Cameron, M. D., Noel, R., Yoo, S. H., Takahashi, J. S., Butler, A. A., Kamenecka, T. M. and Burris, T. P. (2012) Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62-68. https://doi.org/10.1038/nature11030
-
Song, H., Moon, M., Choe, H. K., Han, D. H., Jang, C., Kim, A., Cho, S., Kim, K. and Mook-Jung, I. (2015)
$A{\beta}$ -induced degradation of BMAL1 and CBP leads to circadian rhythm disruption in Alzheimer's disease. Mol. Neurodegener. 10, 13. https://doi.org/10.1186/s13024-015-0007-x - Soria, V., Martinez-Amoros, E., Escaramis, G., Valero, J., Perez-Egea, R., Garcia, C., Gutierrez-Zotes, A., Puigdemont, D., Bayes, M., Crespo, J. M., Martorell, L., Vilella, E., Labad, A., Vallejo, J., Perez, V., Menchon, J. M., Estivill, X., Gratacos, M. and Urretavizcaya, M. (2010) Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 35, 1279-1289. https://doi.org/10.1038/npp.2009.230
- Spanagel, R., Pendyala, G., Abarca, C., Zghoul, T., Sanchis-Segura, C., Magnone, M. C., Lascorz, J., Depner, M., Holzberg, D., Soyka, M., Schreiber, S., Matsuda, F., Lathrop, M., Schumann, G. and Albrecht, U. (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat. Med. 11, 35-42. https://doi.org/10.1038/nm1163
- Straub, R. H. and Cutolo, M. (2007) Circadian rhythms in rheumatoid arthritis: implications for pathophysiology and therapeutic management. Arthritis Rheum. 56, 399-408. https://doi.org/10.1002/art.22368
- Sujino, M., Nagano, M., Fujioka, A., Shigeyoshi, Y. and Inouye, S. (2007) Temporal profile of circadian clock gene expression in a transplanted suprachiasmatic nucleus and peripheral tissues. Eur. J. Neurosci. 26, 2731-2738. https://doi.org/10.1111/j.1460-9568.2007.05926.x
- Sun, Z. S., Albrecht, U., Zhuchenko, O., Bailey, J., Eichele, G. and Lee, C. C. (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90, 1003-1011. https://doi.org/10.1016/S0092-8674(00)80366-9
- Toh, K. L., Jones, C. R., He, Y., Eide, E. J., Hinz, W. A., Virshup, D. M., Ptacek, L. J. and Fu, Y. H. (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040-1043. https://doi.org/10.1126/science.1057499
- Turek, F. W. (2007) From circadian rhythms to clock genes in depression. Int. Clin. Psychopharmacol. 22, S1-S8.
- United Nations Office on Drugs and Crime (2016) World drug report. United Nations Publications.
- Uz, T., Ahmed, R., Akhisaroglu, M., Kurtuncu, M., Imbesi, M., Arslan, A. D. and Manev, A. D. (2005) Effect of fluoxetine and cocaine on the expression of clock genes in the mouse hippocampus and striatum. Neuroscience 134, 1309-1316. https://doi.org/10.1016/j.neuroscience.2005.05.003
- Vanselow, K., Vanselow, J. T., Westermark, P. O., Reischl, S., Maier, B., Korte, T., Herrmann, A., Herzel, H., Schlosser, A. and Kramer, A. (2006) Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev. 20, 2660-2672. https://doi.org/10.1101/gad.397006
- Varcoe, T. J. (2008) The role of serotonin-2C receptors in the rat circadian system. Dissertation. School of Paediatrics and Reproductive Health, South Australia.
- Verwey, M., Khoja, Z., Stewart, J. and Amir, S. (2007) Differential regulation of the expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food-deprived and free-fed rats. Neuroscience 147, 277-285. https://doi.org/10.1016/j.neuroscience.2007.04.044
- Wakamatsu, H., Yoshinobu, Y., Aida, R., Moriya, T., Akiyama, M. and Shibata, S. (2001) Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur. J. Neurosci. 13, 1190-1196. https://doi.org/10.1046/j.0953-816x.2001.01483.x
- Welsh, D. K., Takahashi, J. S. and Kay, S. A. (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 72, 551-577. https://doi.org/10.1146/annurev-physiol-021909-135919
- Witting, W., Kwa, I. H., Eikelenboom, P., Mirmiran, M. and Swaab, D. F. (1990) Alterations in the circadian rest-activity rhythm in aging and Alzheimer's disease. Biol. Psychiatry 27, 563-572. https://doi.org/10.1016/0006-3223(90)90523-5
- Wulff, K., Gatti, S., Wettstein, J. G. and Foster, R. G. (2010) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat. Rev. Neurosci. 11, 589-599.
- Xu, Y., Toh, K., Jones, C. R., Shin, J. Y., Fu, Y. H. and Ptacek, L. (2007) Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128, 59-70. https://doi.org/10.1016/j.cell.2006.11.043
- Yamamoto, H., Imai, K., Takamatsu, Y., Kamegaya, E., Kishida, M., Hagino, Y., Hara, Y., Shimada, K., Yamamoto, T., Sora, I., Koga, H. and Ikeda, K. (2005) Methamphetamine modulation of gene expression in the brain: analysis using customized cDNA microarray system with the mouse homologues of KIAA genes. Brain Res. Mol. Brain Res. 137, 40-46. https://doi.org/10.1016/j.molbrainres.2005.02.028
- Yelamanchili, S. V., Pendyala, G., Brunk, I., Darna, M., Albrecht, U. and Ahnert-Hilger, G. (2006) Differential sorting of the vesicular glutamate transporter 1 into a defined vesicular pool is regulated by light signaling involving the clock gene Period2. J. Biol. Chem. 281, 15671-15679. https://doi.org/10.1074/jbc.M600378200
- Yesavage, J. A., Noda, A., Hernandez, B., Friedman, L., Cheng, J. J., Tinklenberg, J. R., Hallmayer, J., O'hara, R., David, R., Robert, P., Landsverk, E. and Zeitzer, J. M. (2011) Circadian clock gene polymorphisms and sleep-wake disturbance in Alzheimer disease. Am. J. Geriatr. Psychiatry 19, 635-643. https://doi.org/10.1097/JGP.0b013e31820d92b2
- Yokota, S., Horikawa, K., Akiyama, M., Moriya, T., Ebihara, S., Komuro, G., Ohta, T. and Shibata, S. (2000) Inhibitory action of brotizolam on circadian and light-induced per1 and per2 expression in the hamster suprachiasmatic nucleus. Br. J. Pharmacol. 131, 1739-1747. https://doi.org/10.1038/sj.bjp.0703735
- Yuferov, V., Kroslak, T., Laforge, K. S., Zhou, Y., Ho, A. and Kreek, M. J. (2003) Differential gene expression in the rat caudate putamen after "binge" cocaine administration: advantage of triplicate microarray analysis. Synapse 48, 157-169. https://doi.org/10.1002/syn.10198
- Zhang, B., Gao, Y., Li, Y., Yang, J. and Zhao, H. (2016) Sleep deprivation influences circadian gene expression in the lateral habenula. Behav. Neurol. 2016, 7919534.
- Zhang, L., Ptacek, L. J. and Fu, Y. H. (2013) Diversity of human clock genotypes and consequences. Prog. Mol. Biol. Transl. Sci. 119, 51-81.
- Zheng, B., Larkin, D. W., Albrecht, U., Sun, Z. S., Sage, M.,Eichele, G., Lee, C. C. and Bradley, A. (1999) The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400, 169-173. https://doi.org/10.1038/22118
- Zunszain, P., Horowitz, M.,Cattaneo, A., Lupi, M. and Pariante, C. (2013) Ketamine: synaptogenesis, immunomodulation and glycogen synthase kinase-3 as underlying mechanisms of its antidepressant properties. Mol. Psychiatry 18, 1236-1241. https://doi.org/10.1038/mp.2013.87
Cited by
- Emerging role of circadian rhythm in bone remodeling pp.1432-1440, 2018, https://doi.org/10.1007/s00109-018-1723-9
- , influences methamphetamine sensitization and reward through the dopaminergic system in the striatum of mice pp.13556215, 2018, https://doi.org/10.1111/adb.12663
- Sleep and Neurochemical Modulation by DZNep and GSK-J1: Potential Link With Histone Methylation Status vol.13, pp.None, 2019, https://doi.org/10.3389/fnins.2019.00237
- Role of Sirtuins in Modulating Neurodegeneration of the Enteric Nervous System and Central Nervous System vol.14, pp.None, 2018, https://doi.org/10.3389/fnins.2020.614331
- The clock‐controlled chemokine contributes to neuroinflammation‐induced depression vol.34, pp.6, 2020, https://doi.org/10.1096/fj.201900581rrr
- Supplementation with low molecular weight peptides from fish protein hydrolysate reduces acute mild stress-induced corticosterone secretion and modulates stress responsive gene expression in mice vol.76, pp.None, 2018, https://doi.org/10.1016/j.jff.2020.104292
- Chronobiology and Chronotherapy in Depression: Current Knowledge and Chronotherapeutic Promises vol.16, pp.3, 2018, https://doi.org/10.2174/2666082216999201124152432
- Period 2 Regulates CYP2B10 Expression and Activity in Mouse Liver vol.12, pp.None, 2018, https://doi.org/10.3389/fphar.2021.764124
- Possible Association of PER2/PER3 Variable Number Tandem Repeat Polymorphism Variants with Susceptibility and Clinical Characteristics in Pancreatic Cancer vol.25, pp.2, 2021, https://doi.org/10.1089/gtmb.2020.0179
- Gene Expression Profiling in the Striatum of Per2 KO Mice Exhibiting More Vulnerable Responses against Methamphetamine vol.29, pp.2, 2018, https://doi.org/10.4062/biomolther.2020.123
- Free association in psychoanalysis and its links to neuroscience contributions vol.23, pp.2, 2018, https://doi.org/10.1080/15294145.2021.1976666
- Role of Methylation in Period2 (PER2) Transcription in the Context of the Presence or Absence of Light Signals: Natural and Chemical-Studies on the Pig Model vol.22, pp.15, 2018, https://doi.org/10.3390/ijms22157796
- Aberrant Lighting Causes Anxiety-like Behavior in Mice but Curcumin Ameliorates the Symptoms vol.11, pp.9, 2018, https://doi.org/10.3390/ani11092590
- PER2: a potential molecular marker for hematological malignancies vol.48, pp.11, 2021, https://doi.org/10.1007/s11033-021-06751-w
- Food reward induction of rhythmic clock gene expression in the prefrontal cortex of rats is accompanied by changes in miR‐34a‐5p expression vol.54, pp.10, 2018, https://doi.org/10.1111/ejn.15518
- PER2-mediated ameloblast differentiation via PPARγ/AKT1/β-catenin axis vol.13, pp.1, 2018, https://doi.org/10.1038/s41368-021-00123-7
- Interaction between corticosterone and PER2 in regulating emotional behaviors in the rat vol.137, pp.None, 2018, https://doi.org/10.1016/j.psyneuen.2021.105628