DOI QR코드

DOI QR Code

Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2

  • Kim, Mikyung (Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University) ;
  • Pena, June Bryan de la (Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University) ;
  • Cheong, Jae Hoon (Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University) ;
  • Kim, Hee Jin (Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University)
  • Received : 2017.07.03
  • Accepted : 2017.08.22
  • Published : 2018.07.01

Abstract

Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS.

Keywords

References

  1. Abarca, C., Albrecht, U. and Spanagel, R. (2002) Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc. Natl. Acad. Sci. U.S.A. 99, 9026-9030. https://doi.org/10.1073/pnas.142039099
  2. Agostino, P. and Cheng, R. (2016) Contributions of dopaminergic signaling to timing accuracy and precision. Curr. Opin. Behav. Sci. 8, 153-160. https://doi.org/10.1016/j.cobeha.2016.02.013
  3. Akhisaroglu, M., Kurtuncu, M., Manev, H. and Uz, T. (2005) Diurnal rhythms in quinpirole-induced locomotor behaviors and striatal D2/D3 receptor levels in mice. Pharmacol. Biochem. Behav. 80, 371-377. https://doi.org/10.1016/j.pbb.2004.11.016
  4. Albrecht, U. (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74, 246-260. https://doi.org/10.1016/j.neuron.2012.04.006
  5. Albrecht, U., Sun, Z., Eichele, G. and Lee, C. (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91, 1055-1064. https://doi.org/10.1016/S0092-8674(00)80495-X
  6. Albrecht, U., Zheng, B., Larkin, D., Sun, Z. and Lee, C. (2001) MPer1 and mper2 are essential for normal resetting of the circadian clock. J. Biol. Rhythms 16, 100-104. https://doi.org/10.1177/074873001129001791
  7. Amir, S. and Stewart, J. (2009) Motivational modulation of rhythms of the expression of the clock protein PER2 in the limbic forebrain. Biol. Psychiatry 65, 829-834. https://doi.org/10.1016/j.biopsych.2008.12.019
  8. Andretic, R. and Hirsh, J. (2000) Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 97, 1873-1878. https://doi.org/10.1073/pnas.97.4.1873
  9. Arjona, A. and Sarkar, D. (2006) Short communication: The circadian gene mPer2 regulates the daily rhythm of IFN-${\gamma}$. J. Interferon Cytokine Res. 26, 645-649. https://doi.org/10.1089/jir.2006.26.645
  10. Aton, S. J., Huettner, J. E., Straume, M. and Herzog, E. D. (2006) GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons. Proc. Natl. Acad. Sci. U.S.A. 103, 19188-19193. https://doi.org/10.1073/pnas.0607466103
  11. Bae, K., Jin, X., Maywood, E. S., Hastings, M. H., Reppert, S. M. and Weaver, D. R. (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30, 525-536. https://doi.org/10.1016/S0896-6273(01)00302-6
  12. Bae, K. and Weaver, D. R. (2003) Light-induced phase shifts in mice lacking mPER1 or mPER2. J. Biol. Rhythms 18, 123-133. https://doi.org/10.1177/0748730403252248
  13. Baird, A., Coogan, A., Siddiqui, A., Donev, R. and Thome, J. (2012) Adult attention-deficit hyperactivity disorder is associated with alterations in circadian rhythms at the behavioural, endocrine and molecular levels. Mol. Psychiatry 17, 988-995. https://doi.org/10.1038/mp.2011.149
  14. Beaule, C., Swanstrom, A., Leone, M. and Herzog, E. D. (2009) Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes. PLoS ONE 4, e7476. https://doi.org/10.1371/journal.pone.0007476
  15. Bellet, M. M., Vawter, M. P., Bunney, B. G., Bunney, W. E. and Sassone-Corsi, P. (2011) Ketamine influences CLOCK: BMAL1 function leading to altered circadian gene expression. PLoS ONE 6, e23982. https://doi.org/10.1371/journal.pone.0023982
  16. Besharse, J. C., Zhuang, M., Freeman, K. and Fogerty, J. (2004) Regulation of photoreceptor Per1 and Per2 by light, dopamine and a circadian clock. Eur. J. Neurosci. 20, 167-174. https://doi.org/10.1111/j.1460-9568.2004.03479.x
  17. Blomeyer, D., Buchmann, A. F., Lascorz, J., Zimmermann, U. S., Esser, G., Desrivieres, S., Schmidt, M. H., Banaschewski, T., Schumann, G. and Laucht, M. (2013) Association of PER2 genotype and stressful life events with alcohol drinking in young adults. PLoS ONE 8, e59136. https://doi.org/10.1371/journal.pone.0059136
  18. Brager, A., Prosser, R. A. and Glass, J. D. (2011a) Acamprosate-responsive brain sites for suppression of ethanol intake and preference. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1032-R1043. https://doi.org/10.1152/ajpregu.00179.2011
  19. Brager, A., Prosser, R. A. and Glass, J. D. (2011b) Circadian and acamprosate modulation of elevated ethanol drinking in mPer2 clock gene mutant mice. Chronobiol. Int. 28, 664-672. https://doi.org/10.3109/07420528.2011.601968
  20. Brager, A., Stowie, A. C., Prosser, R. A. and Glass, J. D. (2013) The mPer2 clock gene modulates cocaine actions in the mouse circadian system. Behav. Brain Res. 243, 255-260. https://doi.org/10.1016/j.bbr.2013.01.014
  21. Breen, D. P., Vuono, R., Nawarathna, U., Fisher, K., Shneerson, J. M., Reddy, A. B. and Barker, R. A. (2014) Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol. 71, 589-595. https://doi.org/10.1001/jamaneurol.2014.65
  22. Brown, S. A., Ripperger, J., Kadener, S., Fleury-Olela, F., Vilbois, F., Rosbash, M. and Schibler, U. (2005) PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308, 693-696. https://doi.org/10.1126/science.1107373
  23. Bussi, I. L., Levin, G., Golombek, D. A. and Agostino, P. V. (2014) Involvement of dopamine signaling in the circadian modulation of interval timing. Eur. J. Neurosci. 40, 2299-2310. https://doi.org/10.1111/ejn.12569
  24. Caldelas, I., Challet, E., Saboureau, M. and Pevet, P. (2005) Light and melatonin inhibit in vivo serotonergic phase advances without altering serotonergic-induced decrease of per expression in the hamster suprachiasmatic nucleus. J. Mol. Neurosci. 25, 53-63. https://doi.org/10.1385/JMN:25:1:053
  25. Castaneda, T. R., Prado, B. M., Prieto, D. and Mora, F. (2004) Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J. Pineal Res. 36, 177-185. https://doi.org/10.1046/j.1600-079X.2003.00114.x
  26. Cermakian, N., Lamont, E. W., Boudreau, P. and Boivin, D. B. (2011) Circadian clock gene expression in brain regions of Alzheimer's disease patients and control subjects. J. Biol. Rhythms 26, 160-170. https://doi.org/10.1177/0748730410395732
  27. Challet, E. (2007) Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148, 5648-5655. https://doi.org/10.1210/en.2007-0804
  28. Chun, S. K., Jang, J., Chung, S., Yun, H., Kim, N. J., Jung, J. W., Son, G. H., Suh, Y. G. and Kim, K. (2014) Identification and validation of cryptochrome inhibitors that modulate the molecular circadian clock. ACS Chem. Biol. 9, 703-710. https://doi.org/10.1021/cb400752k
  29. Chung, S., Lee, E. J., Yun, S., Choe, H. K., Park, S. B., Son, H. J., Kim, K. S., Dluzen, D. E., Lee, I., Hwang, O., Son, G. H. and Kim, K. (2014) Impact of circadian nuclear receptor REV-$ERB{\alpha}$ on midbrain dopamine production and mood regulation. Cell 157, 858-868. https://doi.org/10.1016/j.cell.2014.03.039
  30. Comasco, E., Nordquist, N., Gokturk, C., Aslund, C., Hallman, J., Oreland, L. and Nilsson, K. W. (2010) The clock gene PER2 and sleep problems: association with alcohol consumption among Swedish adolescents. Ups. J. Med. Sci. 115, 41-48. https://doi.org/10.3109/03009731003597127
  31. Cuesta, M., Clesse, D., Pevet, P. and Challet, E. (2009) New light on the serotonergic paradox in the rat circadian system. J. Neurochem. 110, 231-243. https://doi.org/10.1111/j.1471-4159.2009.06128.x
  32. Curie, T., Maret, S., Emmenegger, Y. and Franken, P. (2015) In vivo imaging of the central and peripheral effects of sleep deprivation and suprachiasmatic nuclei lesion on PERIOD-2 protein in mice. Sleep 38, 1381-1394. https://doi.org/10.5665/sleep.4974
  33. Curie, T., Mongrain, V., Dorsaz, S., Mang, G. M., Emmenegger, Y. and Franken, P. (2013) Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. Sleep 36, 311-323. https://doi.org/10.5665/sleep.2440
  34. dela Pena, I., de la Pena, J. B., Kim, B. N., Han, D. H., Noh, M. and Cheong, J. H. (2015) Gene expression profiling in the striatum of amphetamine-treated spontaneously hypertensive rats which showed amphetamine conditioned place preference and self-administration. Arch. Pharm. Res. 38, 865-875. https://doi.org/10.1007/s12272-014-0470-x
  35. dela Pena, I., Lee, J. C., Lee, H. L. Woo, T. S., Lee, H. C., Sohn, A. R. and Cheong, J. H. (2012a) Differential behavioral responses of the spontaneously hypertensive rat to methylphenidate and methamphetamine: lack of a rewarding effect of repeated methylphenidate treatment. Neurosci. Lett. 514, 189-193. https://doi.org/10.1016/j.neulet.2012.02.090
  36. dela Pena, I., Yoon, S. Y., Lee, J. C., dela Pena, J. B., Sohn, A. R., Ryu, J. H., Shin, C. Y. and Cheong, J. H. (2012b) Methylphenidate treatment in the spontaneously hypertensive rat: influence on methylphenidate self-administration and reinstatement in comparison with Wistar rats. Psychopharmacology (Berl.) 221, 217-226. https://doi.org/10.1007/s00213-011-2564-1
  37. DeWoskin, D., Myung, J., Belle, M. D., Piggins, H. D., Takumi, T. and Forger, D. B. (2015) Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping. Proc. Natl. Acad. Sci. U.S.A. 112, E3911-E3919. https://doi.org/10.1073/pnas.1420753112
  38. Duncan, M. J., Smith, J. T., Franklin, K. M., Beckett, T. L., Murphy, M. P., St Clair, D. K., Donohue, K. D., Striz, M. and O'hara, B. F. (2012) Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knock-in mice, a model for Alzheimer's disease. Exp. Neurol. 236, 249-258. https://doi.org/10.1016/j.expneurol.2012.05.011
  39. Ebisawa, T. (2007) Circadian rhythms in the CNS and peripheral clock disorders: human sleep disorders and clock genes. J. Pharmacol. Sci. 103, 150-154. https://doi.org/10.1254/jphs.FMJ06003X5
  40. Ehlen, J. C., Novak, C. M., Karom, M. C., Gamble, K. L., Paul, K. N. and Albers, H. E. (2006) $GABA_A$ receptor activation suppresses Period 1 mRNA and Period 2 mRNA in the suprachiasmatic nucleus during the mid-subjective day. Eur. J. Neurosci. 23, 3328-3336. https://doi.org/10.1111/j.1460-9568.2006.04857.x
  41. Eide, E. J., Woolf, M. F., Kang, H., Woolf, P., Hurst, W., Camacho, F., Vielhaber, E. L., Giovanni, A. and Virshup, D. M. (2005) Control of mammalian circadian rhythm by $CKI{\varepsilon}$-regulated proteasome-mediated PER2 degradation. Mol. Cell. Biol. 25, 2795-2807. https://doi.org/10.1128/MCB.25.7.2795-2807.2005
  42. Feillet, C. A., Ripperger, J. A., Magnone, M. C., Dulloo, A., Albrecht, U. and Challet, E. (2006) Lack of food anticipation in Per2 mutant mice. Curr. Biol. 16, 2016-2022. https://doi.org/10.1016/j.cub.2006.08.053
  43. Franken, P., Thomason, R., Heller, H. C. and O'Hara, B. F. (2007) A non-circadian role for clock-genes in sleep homeostasis: a strain comparison. BMC Neurosci. 8, 87. https://doi.org/10.1186/1471-2202-8-87
  44. Gallardo, C. M., Darvas, M., Oviatt, M., Chang, C. H., Michalik, M., Huddy, T. F., Meyer, E. E., Shuster, S. A., Aguayo, A., Hill, E. M., Kiani, K., Ikpeazu, J., Martinez, J. S., Purpura, M., Smit, A. N., Patton, D. F., Mistlberger, R. E., Palmiter, R. D. and Steele, A. D. (2014) Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice. Elife 3, e03781.
  45. Gamsby, J., Templeton, E., Bonvini, L., Wang, W., Loros, J., Dunlap, J., Green, A. and Gulick, D. (2013) The circadian Per1 and Per2 genes influence alcohol intake, reinforcement, and blood alcohol levels. Behav. Brain Res. 249, 15-21. https://doi.org/10.1016/j.bbr.2013.04.016
  46. Garmabi, B., Vousooghi, N., Vosough, M., Yoonessi, A., Bakhtazad, A. and Zarrindast, M. (2016) Effect of circadian rhythm disturbance on morphine preference and addiction in male rats: Involvement of period genes and dopamine D1 receptor. Neuroscience 322, 104-114. https://doi.org/10.1016/j.neuroscience.2016.02.019
  47. Gekakis, N., Staknis, D., Nguyen, H. B., Davis, F. C., Wilsbacher, L. D., King, D. P., Takahashi, J. S. and Weitz, C. J. (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564-1569. https://doi.org/10.1126/science.280.5369.1564
  48. Gravotta, L., Gavrila, A. M., Hood, S. and Amir, S. (2011) Global depletion of dopamine using intracerebroventricular 6-hydroxydopamine injection disrupts normal circadian wheel-running patterns and PERIOD2 expression in the rat forebrain. J. Mol. Neurosci. 45, 162-171. https://doi.org/10.1007/s12031-011-9520-8
  49. Grimaldi, B., Bellet, M. M., Katada, S., Astarita, G., Hirayama, J., Amin, R. H., Granneman, J. G., Piomelli, D., Leff, T. and Sassone-Corsi, P. (2010) PER2 controls lipid metabolism by direct regulation of $PPAR{\gamma}$. Cell Metab. 12, 509-520. https://doi.org/10.1016/j.cmet.2010.10.005
  50. Guo, H., Brewer, J. M., Lehman, M. N. and Bittman, E. L. (2006) Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J. Neurosci. 26, 6406-6412. https://doi.org/10.1523/JNEUROSCI.4676-05.2006
  51. Hampp, G. and Albrecht, U. (2008) The circadian clock and mood-related behavior. Commun. Integr. Biol. 1, 1-3. https://doi.org/10.4161/cib.1.1.6286
  52. Hampp, G., Ripperger, J. A., Houben, T., Schmutz, I., Blex, C., Perreau-Lenz, S., Brunk, I., Spanagel, R., Ahnert-Hilger, G., Meijer, J. H. and Albrecht, U. (2008) Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood. Curr. Biol. 18, 678-683. https://doi.org/10.1016/j.cub.2008.04.012
  53. Hinton, D. J. (2016) Preclinical and clinical implications of adenosine and glutamate signaling in alcohol use disorder. Dissertation. College of Medicine-Mayo Clinic, Minnesota.
  54. Hirota, T. and Kay, S. A. (2009) High-throughput screening and chemical biology: new approaches for understanding circadian clock mechanisms. Chem. Biol. 16, 921-927. https://doi.org/10.1016/j.chembiol.2009.09.002
  55. Hood, S., Cassidy, P., Cossette, M. P., Weigl, Y., Verwey, M., Robinson, B., Stewart, J. and Amir, S. (2010) Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J. Neurosci. 30, 14046-14058. https://doi.org/10.1523/JNEUROSCI.2128-10.2010
  56. Horikawa, K., Yokota, S., Fuji, K., Akiyama, M., Moriya, T., Okamura, H. and Shibata, S. (2000) Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei. J. Neurosci. 20, 5867-5873. https://doi.org/10.1523/JNEUROSCI.20-15-05867.2000
  57. Jiang, W. G., Li, S. X., Zhou, S. J., Sun, Y., Shi, J. and Lu, L., (2011) Chronic unpredictable stress induces a reversible change of PER2 rhythm in the suprachiasmatic nucleus. Brain Res. 1399, 25-32. https://doi.org/10.1016/j.brainres.2011.05.001
  58. Jin, X., Shearman, L. P., Weaver, D. R., Zylka, M. J., de Vries, G. J. and Reppert, S. M. (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96, 57-68. https://doi.org/10.1016/S0092-8674(00)80959-9
  59. Johansson, C., Willeit, M., Smedh, C., Ekholm, J., Paunio, T., Kieseppa, T., Lichtermann, D., Praschak-Rieder, N., Neumeister, A., Nilsson, L. G., Kasper, S., Peltonen, L., Adolfsson, R., Schalling, M. and Partonen, T. (2003) Circadian clock-related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 28, 734-739. https://doi.org/10.1038/sj.npp.1300121
  60. Kalsbeek, A., Foppen, E.,Schalij, I., Van Heijningen, C., van der Vliet, J., Fliers, E. and Buijs, R. M. (2008) Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS ONE 3, e3194. https://doi.org/10.1371/journal.pone.0003194
  61. Ko, C. H. and Takahashi, J. S. (2006) Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15, R271-R277. https://doi.org/10.1093/hmg/ddl207
  62. Kondratov, R. V., Chernov, M. V., Kondratova, A. A., Gorbacheva, V. Y., Gudkov, A. V. and Antoch, M. P. (2003) BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev. 17, 1921-1932. https://doi.org/10.1101/gad.1099503
  63. Konopka, R. J. and Benzer, S. (1971) Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 68, 2112-2116. https://doi.org/10.1073/pnas.68.9.2112
  64. Kopp, C., Albrecht, U., Zheng, B. and Tobler, I. (2002) Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur. J. Neurosci. 16, 1099-1106. https://doi.org/10.1046/j.1460-9568.2002.02156.x
  65. Kudo, T., Loh, D. H., Truong, D., Wu, Y. and Colwell, C. S. (2011a) Circadian dysfunction in a mouse model of Parkinson's disease. Exp. Neurol. 232, 66-75. https://doi.org/10.1016/j.expneurol.2011.08.003
  66. Kudo, T., Schroeder, A., Loh, D. H., Kuljis, D., Jordan, M. C., Roos, K. P. and Colwell, C. S. (2011b) Dysfunctions in circadian behavior and physiology in mouse models of Huntington's disease. Exp. Neurol. 228, 80-90. https://doi.org/10.1016/j.expneurol.2010.12.011
  67. Kume, K., Zylka, M. J., Sriram, S., Shearman, L. P., Weaver, D. R., Jin, X., Maywood, E. S., Hastings, M. H. and Reppert, S. M. (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193-205. https://doi.org/10.1016/S0092-8674(00)81014-4
  68. Kwon, I., Lee, J., Chang, S. H., Jung, N. C., Lee, B. J., Son, G. H., Kim, K. and Lee, K. H. (2006) BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer. Mol. Cell. Biol. 26, 7318-7330. https://doi.org/10.1128/MCB.00337-06
  69. Lamont, E. W., Diaz, L. R., Barry-Shaw, J., Stewart, J. and Amir, S. (2005) Daily restricted feeding rescues a rhythm of period2 expression in the arrhythmic suprachiasmatic nucleus. Neuroscience 132, 245-248. https://doi.org/10.1016/j.neuroscience.2005.01.029
  70. Lavebratt, C., Sjoholm, L. K., Partonen, T., Schalling, M. and Forsell, Y. (2010) PER2 variantion is associated with depression vulnerability. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 570-581. https://doi.org/10.1002/ajmg.b.31021
  71. Lee, C., Weaver, D. R. and Reppert, S. M. (2004) Direct association between mouse PERIOD and $CKI{\varepsilon}$ is critical for a functioning circadian clock. Mol.Cell.Biol. 24, 584-594. https://doi.org/10.1128/MCB.24.2.584-594.2004
  72. Lee, H., Chen, R., Kim, H., Etchegaray, J. P., Weaver, D. R. and Lee, C. (2011a) The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc. Natl. Acad. Sci. U.S.A. 108, 16451-16456. https://doi.org/10.1073/pnas.1107178108
  73. Lee, H. J., Kim, L., Kang, S. G., Yoon, H. K., Choi, J. E., Park, Y. M., Kim, S. J. and Kripke, D. F. (2011b) PER2 variation is associated with diurnal preference in a Korean young population. Behav. Genet. 41, 273-277. https://doi.org/10.1007/s10519-010-9396-3
  74. Lesch, K. P. (2004) Gene-environment interaction and the genetics of depression. J. Psychiatry Neurosci. 29, 174-184.
  75. Logan, R. W., Edgar, N., Gillman, A. G., Hoffman, D., Zhu, X. and Mc-Clung, C. A. (2015) Chronic stress induces brain region-specific alterations of molecular rhythms that correlate with depression-like behavior in mice. Biol. Psychiatry 78, 249-258. https://doi.org/10.1016/j.biopsych.2015.01.011
  76. Loh, D. H., Kudo, T., Truong, D., Wu, Y. and Colwell, C. S. (2013) The Q175 mouse model of Huntington's disease shows gene dosage- and age-related decline in circadian rhythms of activity and sleep. PLoS ONE 8, e69993. https://doi.org/10.1371/journal.pone.0069993
  77. Lowrey, P. L. and Takahashi, J. S. (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5, 407-441. https://doi.org/10.1146/annurev.genom.5.061903.175925
  78. Matsuo, I., Iijima, N., Takumi, K., Higo, S., Aikawa, S., Anzai, M., Ishii, H., Sakamoto, A. and Ozawa, H. (2016) Characterization of sevoflurane effects on Per2 expression using ex vivo bioluminescence imaging of the suprachiasmatic nucleus in transgenic rats. Neurosci. Res. 107, 30-37. https://doi.org/10.1016/j.neures.2015.11.010
  79. McClung, C. A. (2007a) Circadian genes, rhythms and the biology of mood disorders. Pharmacol. Ther. 114, 222-232. https://doi.org/10.1016/j.pharmthera.2007.02.003
  80. McClung, C. A. (2007b) Circadian rhythms, the mesolimbic dopaminergic circuit, and drug addiction. Scientific World Journal 7, 194-202. https://doi.org/10.1100/tsw.2007.213
  81. McClung, C. A. and Nestler, E. J. (2003) Regulation of gene expression and cocaine reward by CREB and ${\Delta}FosB$. Nat. Neurosci. 6, 1209-1215.
  82. Mendoza, J., Albrecht, U. and Challet, E. (2010) Behavioural food anticipation in clock genes deficient mice: confirming old phenotypes, describing new phenotypes. Genes Brain Behav. 9, 467-477.
  83. Mendoza, J., Clesse, D., Pevet, P. and Challet, E. (2008) Serotonergic potentiation of dark pulse-induced phase-shifting effects at midday in hamsters. J. Neurochem. 106, 1404-1414. https://doi.org/10.1111/j.1471-4159.2008.05493.x
  84. Mieda, M., Williams, S. C., Richardson, J. A., Tanaka, K. and Yanagisawa, M. (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc. Natl. Acad. Sci. U.S.A. 103, 12150-12155. https://doi.org/10.1073/pnas.0604189103
  85. Mignot, E. and Takahashi, J. S. (2007) A circadian sleep disorder reveals a complex clock. Cell 128, 22-23. https://doi.org/10.1016/j.cell.2006.12.024
  86. Mistlberger, R. E. (1994) Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 18, 171-195. https://doi.org/10.1016/0149-7634(94)90023-X
  87. Miyazaki, K., Wakabayashi, M., Chikahisa, S., Sei, H. and Ishida, N. (2007) PER2 controls circadian periods through nuclear localization in the suprachiasmatic nucleus. Genes Cells 12, 1225-1234. https://doi.org/10.1111/j.1365-2443.2007.01129.x
  88. Mohawk, J. A., Green, C. B. and Takahashi, J. S. (2012) Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445-462. https://doi.org/10.1146/annurev-neuro-060909-153128
  89. Moriya, T., Horikawa, K., Akiyama, M. and Shibata, S. (2000) Correlative association between N-methyl-D-aspartate receptor-mediated expression of period genes in the suprachiasmatic nucleus and phase shifts in behavior with photic entrainment of clock in hamsters. Mol. Pharmacol. 58, 1554-1562. https://doi.org/10.1124/mol.58.6.1554
  90. Nagoshi, E., Saini, C., Bauer, C., Laroche, T., Naef, F. and Schibler, U. (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693-705. https://doi.org/10.1016/j.cell.2004.11.015
  91. Nielsen, H., Hannibal, J., Knudsen, S. and Fahrenkrug, J. (2001) Pituitary adenylate cyclase-activating polypeptide induces period1 and period2 gene expression in the rat suprachiasmatic nucleus during late night. Neuroscience 103, 433-441. https://doi.org/10.1016/S0306-4522(00)00563-7
  92. Novak, C. M., Ehlen, J. C., Paul, K. N., Fukuhara, C. and Albers, H. E. (2006) Light and $GABA_A$ receptor activation alter period mRNA levels in the SCN of diurnal Nile grass rats. Eur. J. Neurosci. 24, 2843-2852. https://doi.org/10.1111/j.1460-9568.2006.05166.x
  93. Partonen, T., Treutlein, J., Alpman, A., Frank, J., Johansson, C., Depner, M., Aron, L., Rietschel, M., Wellek, S., Soronen, P., Paunio, T., Koch, A., Chen, P., Lathrop, M., Adolfsson, R., Persson, M. L., Kasper, S., Schalling, M., Peltonen, L. and Schumann, G. (2007) Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann. Med. 39, 229-238. https://doi.org/10.1080/07853890701278795
  94. Paul, K. N., Fukuhara, C., Karom, M., Tosini, G. and Albers, H. E. (2005) AMPA/kainate receptor antagonist DNQX blocks the acute increase of Per2 mRNA levels in most but not all areas of the SCN. Brain Res. Mol. Brain Res. 139, 129-136. https://doi.org/10.1016/j.molbrainres.2005.05.017
  95. Pendergast, J. S., Oda, G. A., Niswender, K. D. and Yamazaki, S. (2012) Period determination in the food-entrainable and methamphetamine-sensitive circadian oscillator(s). Proc. Natl. Acad. Sci. U.S.A. 109, 14218-14223. https://doi.org/10.1073/pnas.1206213109
  96. Pereira, P. A., Alvim-Soares, A., Bicalho, M. A., Moraes, E. N., Malloy-Diniz, L., Paula, J. J., Romano-Silva, M. A. and Miranda, D. M. (2016) Lack of association between genetic polymorphism of circadian genes (PER2, PER3, CLOCK and OX2R) with late onset depression and alzheimer's disease in a sample of a Brazilian population (circadian genes, late-onset depression and Alzheimer's disease). Curr. Alzheimer Res. 13, 1397-1406. https://doi.org/10.2174/1567205013666160603005630
  97. Perreau-Lenz, S., Sanchis-Segura, C., Leonardi-Essmann, F., Schneider, M. and Spanagel, R. (2010) Development of morphine-induced tolerance and withdrawal: involvement of the clock gene mPer2. Eur. Neuropsychopharmacol. 20, 509-517. https://doi.org/10.1016/j.euroneuro.2010.03.006
  98. Phillips, K. (2004) Serotonin's circadian rhythm. J. Exp. Biol. 207, i-ii.
  99. Quay, W. (1963) Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen. Comp. Endocrinol. 3, 473-479. https://doi.org/10.1016/0016-6480(63)90079-0
  100. Ralph, M. R. and Menaker, M. (1989) GABA regulation of circadian responses to light. I. Involvement of $GABA_A$-benzodiazepine and $GABA_B$ receptors. J. Neurosci. 9, 2858-2865. https://doi.org/10.1523/JNEUROSCI.09-08-02858.1989
  101. Reick, M., Garcia, J. A., Dudley, C. and McKnight, S. L. (2001) NPAS2: an analog of clock operative in the mammalian forebrain. Science 293, 506-509. https://doi.org/10.1126/science.1060699
  102. Ripperger, J. A. and Albrecht, U. (2012) The circadian clock component PERIOD2: from molecular to cerebral functions. Prog. Brain Res. 199, 233-245.
  103. Ripperger, J. A., Jud, C. and Albrecht, U. (2011) The daily rhythm of mice. FEBS Lett. 585, 1384-1392. https://doi.org/10.1016/j.febslet.2011.02.027
  104. Ruan, G. X., Allen, G. C., Yamazaki, S. and McMahon, D. G. (2008) An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA. PLoS Biol. 6, e249. https://doi.org/10.1371/journal.pbio.0060249
  105. Sahar, S., Zocchi, L., Kinoshita, C., Borrelli, E. and Sassone-Corsi, P. (2010) Regulation of BMAL1 protein stability and circadian function by $GSK3{\beta}$-mediated phosphorylation. PLoS ONE 5, e8561. https://doi.org/10.1371/journal.pone.0008561
  106. Salamone, J. D., Correa, M., Mingote, S. and Weber, S. (2003) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J. Pharmacol. Exp. Ther. 305, 1-8. https://doi.org/10.1124/jpet.102.035063
  107. Schmutz, I., Ripperger, J. A., Baeriswyl-Aebischer, S. and Albrecht, U. (2010) The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24, 345-357. https://doi.org/10.1101/gad.564110
  108. Shearman, L. P., Sriram, S., Weaver, D. R., Maywood, E. S., Chaves, I., Zheng, B., Kume, K., Lee, C. C., van der Horst, G. T., Hastings, M. H. and Reppert, S. M. (2000) Interacting molecular loops in the mammalian circadian clock. Science 288, 1013-1019. https://doi.org/10.1126/science.288.5468.1013
  109. Shumay, E., Fowler, J., Wang, G., Logan, J., Alia-Klein, N., Goldstein, R., Maloney, T., Wong, C. and Volkow, N. (2012) Repeat variation in the human PER2 gene as a new genetic marker associated with cocaine addiction and brain dopamine D2 receptor availability. Transl. Psychiatry 2, e86. https://doi.org/10.1038/tp.2012.11
  110. Simerly, R. (2006) Feeding signals and drugs meet in the midbrain. Nat. Med. 12, 1244-1246. https://doi.org/10.1038/nm1106-1244
  111. Sleipness, E. P., Sorg, B. A. and Jansen, H. T. (2007) Diurnal differences in dopamine transporter and tyrosine hydroxylase levels in rat brain: dependence on the suprachiasmatic nucleus. Brain Res. 1129, 34-42. https://doi.org/10.1016/j.brainres.2006.10.063
  112. Snyder, S. H., Zweig, M., Axelrod, J. and Fischer, J. E. (1965) Control of the circadian rhythm in serotonin content of the rat pineal gland. Proc. Natl. Acad. Sci. U.S.A. 53, 301-305. https://doi.org/10.1073/pnas.53.2.301
  113. Solt, L. A., Wang, Y., Banerjee, S., Hughes, T., Kojetin, D. J., Lundasen, T., Shin, Y., Liu, J., Cameron, M. D., Noel, R., Yoo, S. H., Takahashi, J. S., Butler, A. A., Kamenecka, T. M. and Burris, T. P. (2012) Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62-68. https://doi.org/10.1038/nature11030
  114. Song, H., Moon, M., Choe, H. K., Han, D. H., Jang, C., Kim, A., Cho, S., Kim, K. and Mook-Jung, I. (2015) $A{\beta}$-induced degradation of BMAL1 and CBP leads to circadian rhythm disruption in Alzheimer's disease. Mol. Neurodegener. 10, 13. https://doi.org/10.1186/s13024-015-0007-x
  115. Soria, V., Martinez-Amoros, E., Escaramis, G., Valero, J., Perez-Egea, R., Garcia, C., Gutierrez-Zotes, A., Puigdemont, D., Bayes, M., Crespo, J. M., Martorell, L., Vilella, E., Labad, A., Vallejo, J., Perez, V., Menchon, J. M., Estivill, X., Gratacos, M. and Urretavizcaya, M. (2010) Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 35, 1279-1289. https://doi.org/10.1038/npp.2009.230
  116. Spanagel, R., Pendyala, G., Abarca, C., Zghoul, T., Sanchis-Segura, C., Magnone, M. C., Lascorz, J., Depner, M., Holzberg, D., Soyka, M., Schreiber, S., Matsuda, F., Lathrop, M., Schumann, G. and Albrecht, U. (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat. Med. 11, 35-42. https://doi.org/10.1038/nm1163
  117. Straub, R. H. and Cutolo, M. (2007) Circadian rhythms in rheumatoid arthritis: implications for pathophysiology and therapeutic management. Arthritis Rheum. 56, 399-408. https://doi.org/10.1002/art.22368
  118. Sujino, M., Nagano, M., Fujioka, A., Shigeyoshi, Y. and Inouye, S. (2007) Temporal profile of circadian clock gene expression in a transplanted suprachiasmatic nucleus and peripheral tissues. Eur. J. Neurosci. 26, 2731-2738. https://doi.org/10.1111/j.1460-9568.2007.05926.x
  119. Sun, Z. S., Albrecht, U., Zhuchenko, O., Bailey, J., Eichele, G. and Lee, C. C. (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90, 1003-1011. https://doi.org/10.1016/S0092-8674(00)80366-9
  120. Toh, K. L., Jones, C. R., He, Y., Eide, E. J., Hinz, W. A., Virshup, D. M., Ptacek, L. J. and Fu, Y. H. (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040-1043. https://doi.org/10.1126/science.1057499
  121. Turek, F. W. (2007) From circadian rhythms to clock genes in depression. Int. Clin. Psychopharmacol. 22, S1-S8.
  122. United Nations Office on Drugs and Crime (2016) World drug report. United Nations Publications.
  123. Uz, T., Ahmed, R., Akhisaroglu, M., Kurtuncu, M., Imbesi, M., Arslan, A. D. and Manev, A. D. (2005) Effect of fluoxetine and cocaine on the expression of clock genes in the mouse hippocampus and striatum. Neuroscience 134, 1309-1316. https://doi.org/10.1016/j.neuroscience.2005.05.003
  124. Vanselow, K., Vanselow, J. T., Westermark, P. O., Reischl, S., Maier, B., Korte, T., Herrmann, A., Herzel, H., Schlosser, A. and Kramer, A. (2006) Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev. 20, 2660-2672. https://doi.org/10.1101/gad.397006
  125. Varcoe, T. J. (2008) The role of serotonin-2C receptors in the rat circadian system. Dissertation. School of Paediatrics and Reproductive Health, South Australia.
  126. Verwey, M., Khoja, Z., Stewart, J. and Amir, S. (2007) Differential regulation of the expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food-deprived and free-fed rats. Neuroscience 147, 277-285. https://doi.org/10.1016/j.neuroscience.2007.04.044
  127. Wakamatsu, H., Yoshinobu, Y., Aida, R., Moriya, T., Akiyama, M. and Shibata, S. (2001) Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur. J. Neurosci. 13, 1190-1196. https://doi.org/10.1046/j.0953-816x.2001.01483.x
  128. Welsh, D. K., Takahashi, J. S. and Kay, S. A. (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 72, 551-577. https://doi.org/10.1146/annurev-physiol-021909-135919
  129. Witting, W., Kwa, I. H., Eikelenboom, P., Mirmiran, M. and Swaab, D. F. (1990) Alterations in the circadian rest-activity rhythm in aging and Alzheimer's disease. Biol. Psychiatry 27, 563-572. https://doi.org/10.1016/0006-3223(90)90523-5
  130. Wulff, K., Gatti, S., Wettstein, J. G. and Foster, R. G. (2010) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat. Rev. Neurosci. 11, 589-599.
  131. Xu, Y., Toh, K., Jones, C. R., Shin, J. Y., Fu, Y. H. and Ptacek, L. (2007) Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128, 59-70. https://doi.org/10.1016/j.cell.2006.11.043
  132. Yamamoto, H., Imai, K., Takamatsu, Y., Kamegaya, E., Kishida, M., Hagino, Y., Hara, Y., Shimada, K., Yamamoto, T., Sora, I., Koga, H. and Ikeda, K. (2005) Methamphetamine modulation of gene expression in the brain: analysis using customized cDNA microarray system with the mouse homologues of KIAA genes. Brain Res. Mol. Brain Res. 137, 40-46. https://doi.org/10.1016/j.molbrainres.2005.02.028
  133. Yelamanchili, S. V., Pendyala, G., Brunk, I., Darna, M., Albrecht, U. and Ahnert-Hilger, G. (2006) Differential sorting of the vesicular glutamate transporter 1 into a defined vesicular pool is regulated by light signaling involving the clock gene Period2. J. Biol. Chem. 281, 15671-15679. https://doi.org/10.1074/jbc.M600378200
  134. Yesavage, J. A., Noda, A., Hernandez, B., Friedman, L., Cheng, J. J., Tinklenberg, J. R., Hallmayer, J., O'hara, R., David, R., Robert, P., Landsverk, E. and Zeitzer, J. M. (2011) Circadian clock gene polymorphisms and sleep-wake disturbance in Alzheimer disease. Am. J. Geriatr. Psychiatry 19, 635-643. https://doi.org/10.1097/JGP.0b013e31820d92b2
  135. Yokota, S., Horikawa, K., Akiyama, M., Moriya, T., Ebihara, S., Komuro, G., Ohta, T. and Shibata, S. (2000) Inhibitory action of brotizolam on circadian and light-induced per1 and per2 expression in the hamster suprachiasmatic nucleus. Br. J. Pharmacol. 131, 1739-1747. https://doi.org/10.1038/sj.bjp.0703735
  136. Yuferov, V., Kroslak, T., Laforge, K. S., Zhou, Y., Ho, A. and Kreek, M. J. (2003) Differential gene expression in the rat caudate putamen after "binge" cocaine administration: advantage of triplicate microarray analysis. Synapse 48, 157-169. https://doi.org/10.1002/syn.10198
  137. Zhang, B., Gao, Y., Li, Y., Yang, J. and Zhao, H. (2016) Sleep deprivation influences circadian gene expression in the lateral habenula. Behav. Neurol. 2016, 7919534.
  138. Zhang, L., Ptacek, L. J. and Fu, Y. H. (2013) Diversity of human clock genotypes and consequences. Prog. Mol. Biol. Transl. Sci. 119, 51-81.
  139. Zheng, B., Larkin, D. W., Albrecht, U., Sun, Z. S., Sage, M.,Eichele, G., Lee, C. C. and Bradley, A. (1999) The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400, 169-173. https://doi.org/10.1038/22118
  140. Zunszain, P., Horowitz, M.,Cattaneo, A., Lupi, M. and Pariante, C. (2013) Ketamine: synaptogenesis, immunomodulation and glycogen synthase kinase-3 as underlying mechanisms of its antidepressant properties. Mol. Psychiatry 18, 1236-1241. https://doi.org/10.1038/mp.2013.87

Cited by

  1. Emerging role of circadian rhythm in bone remodeling pp.1432-1440, 2018, https://doi.org/10.1007/s00109-018-1723-9
  2. , influences methamphetamine sensitization and reward through the dopaminergic system in the striatum of mice pp.13556215, 2018, https://doi.org/10.1111/adb.12663
  3. Sleep and Neurochemical Modulation by DZNep and GSK-J1: Potential Link With Histone Methylation Status vol.13, pp.None, 2019, https://doi.org/10.3389/fnins.2019.00237
  4. Role of Sirtuins in Modulating Neurodegeneration of the Enteric Nervous System and Central Nervous System vol.14, pp.None, 2018, https://doi.org/10.3389/fnins.2020.614331
  5. The clock‐controlled chemokine contributes to neuroinflammation‐induced depression vol.34, pp.6, 2020, https://doi.org/10.1096/fj.201900581rrr
  6. Supplementation with low molecular weight peptides from fish protein hydrolysate reduces acute mild stress-induced corticosterone secretion and modulates stress responsive gene expression in mice vol.76, pp.None, 2018, https://doi.org/10.1016/j.jff.2020.104292
  7. Chronobiology and Chronotherapy in Depression: Current Knowledge and Chronotherapeutic Promises vol.16, pp.3, 2018, https://doi.org/10.2174/2666082216999201124152432
  8. Period 2 Regulates CYP2B10 Expression and Activity in Mouse Liver vol.12, pp.None, 2018, https://doi.org/10.3389/fphar.2021.764124
  9. Possible Association of PER2/PER3 Variable Number Tandem Repeat Polymorphism Variants with Susceptibility and Clinical Characteristics in Pancreatic Cancer vol.25, pp.2, 2021, https://doi.org/10.1089/gtmb.2020.0179
  10. Gene Expression Profiling in the Striatum of Per2 KO Mice Exhibiting More Vulnerable Responses against Methamphetamine vol.29, pp.2, 2018, https://doi.org/10.4062/biomolther.2020.123
  11. Free association in psychoanalysis and its links to neuroscience contributions vol.23, pp.2, 2018, https://doi.org/10.1080/15294145.2021.1976666
  12. Role of Methylation in Period2 (PER2) Transcription in the Context of the Presence or Absence of Light Signals: Natural and Chemical-Studies on the Pig Model vol.22, pp.15, 2018, https://doi.org/10.3390/ijms22157796
  13. Aberrant Lighting Causes Anxiety-like Behavior in Mice but Curcumin Ameliorates the Symptoms vol.11, pp.9, 2018, https://doi.org/10.3390/ani11092590
  14. PER2: a potential molecular marker for hematological malignancies vol.48, pp.11, 2021, https://doi.org/10.1007/s11033-021-06751-w
  15. Food reward induction of rhythmic clock gene expression in the prefrontal cortex of rats is accompanied by changes in miR‐34a‐5p expression vol.54, pp.10, 2018, https://doi.org/10.1111/ejn.15518
  16. PER2-mediated ameloblast differentiation via PPARγ/AKT1/β-catenin axis vol.13, pp.1, 2018, https://doi.org/10.1038/s41368-021-00123-7
  17. Interaction between corticosterone and PER2 in regulating emotional behaviors in the rat vol.137, pp.None, 2018, https://doi.org/10.1016/j.psyneuen.2021.105628