References
- Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., Fiebich, B. L., Finch, C. E., Frautschy, S., Griffin, W. S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I. R., McGeer, P. L., O'Banion, M. K., Pachter, J., Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F. L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G. and Wyss-Coray, T. (2000) Inflammation and Alzheimer's disease. Neurobiol. Aging 21, 383-421. https://doi.org/10.1016/S0197-4580(00)00124-X
- Allen, N. J. and Barres, B. A. (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr. Opin. Neurobiol. 15, 542-548. https://doi.org/10.1016/j.conb.2005.08.006
- Allen, N. J., Bennett, M. L., Foo, L. C., Wang, G. X., Chakraborty, C., Smith, S. J. and Barres, B. A. (2012) Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486, 410-414. https://doi.org/10.1038/nature11059
- Araque, A., Sanzgiri, R. P., Parpura, V. and Haydon, P. G. (1999) Astrocyte-induced modulation of synaptic transmission. Can. J. Physiol. Pharmacol. 77, 699-706. https://doi.org/10.1139/y99-076
-
Austin, S. A., Floden, A. M., Murphy, E. J. and Combs, C. K. (2006)
${\alpha}$ -synuclein expression modulates microglial activation phenotype. J. Neurosci. 26, 10558-10563. https://doi.org/10.1523/JNEUROSCI.1799-06.2006 - Bellesi, M., de Vivo, L., Chini, M., Gilli, F., Tononi, G. and Cirelli, C. (2017) Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. J. Neurosci. 37, 5263-5273. https://doi.org/10.1523/JNEUROSCI.3981-16.2017
- Benkler, C., Ben-Zur, T., Barhum, Y. and Offen, D. (2013) Altered astrocytic response to activation in SOD1(G93A) mice and its implications on amyotrophic lateral sclerosis pathogenesis. Glia 61, 312-326. https://doi.org/10.1002/glia.22428
- Bolmont, T., Haiss, F., Eicke, D., Radde, R., Mathis, C. A., Klunk, W. E., Kohsaka, S., Jucker, M. and Calhoun, M. E. (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci. 28, 4283-4292. https://doi.org/10.1523/JNEUROSCI.4814-07.2008
- Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubischer, J. L., Krieg, P. A., Krupenko, S. A., Thompson, W. J. and Barres, B. A. (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264-278. https://doi.org/10.1523/JNEUROSCI.4178-07.2008
-
Chen, K., Iribarren, P., Hu, J., Chen, J., Gong, W., Cho, E. H., Lockett, S., Dunlop, N. M. and Wang, J. M. (2006) Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid
${\beta}$ peptide. J. Biol. Chem. 281, 3651-3659. https://doi.org/10.1074/jbc.M508125200 - Cho, K. J., Cheon, S. Y. and Kim, G. W. (2016) Apoptosis signal-regulating kinase 1 mediates striatal degeneration via the regulation of C1q. Sci. Rep. 6, 18840. https://doi.org/10.1038/srep18840
- Chung, W. S. and Barres, B. A. (2012) The role of glial cells in synapse elimination. Curr. Opin. Neurobiol. 22, 438-445. https://doi.org/10.1016/j.conb.2011.10.003
- Chung, W. S., Clarke, L. E., Wang, G. X., Stafford, B. K., Sher, A., Chakraborty, C., Joung, J., Foo, L. C., Thompson, A., Chen, C., Smith, S. J. and Barres, B. A. (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394-400. https://doi.org/10.1038/nature12776
- Chung, W. S., Verghese, P. B., Chakraborty, C., Joung, J., Hyman, B. T., Ulrich, J. D., Holtzman, D. M. and Barres, B. A. (2016) Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes. Proc. Natl. Acad. Sci. U.S.A. 113, 10186-10191. https://doi.org/10.1073/pnas.1609896113
- Clarke, L. E. and Barres, B. A. (2013) Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14, 311-321. https://doi.org/10.1038/nrn3484
- Clement, A. M., Nguyen, M. D., Roberts, E. A., Garcia, M. L., Boillee, S., Rule, M., McMahon, A. P., Doucette, W., Siwek, D., Ferrante, R. J., Brown, R. H., Jr., Julien, J. P., Goldstein, L. S. and Cleveland, D. W. (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113-117. https://doi.org/10.1126/science.1086071
- Cuyvers, E., Bettens, K., Philtjens, S., Van Langenhove, T., Gijselinck, I., van der Zee, J., Engelborghs, S., Vandenbulcke, M., Van Dongen, J., Geerts, N., Maes, G., Mattheijssens, M., Peeters, K., Cras, P., Vandenberghe, R., De Deyn, P. P., Van Broeckhoven, C., Cruts, M. and Sleegers, K. (2014) Investigating the role of rare heterozygous TREM2 variants in Alzheimer's disease and frontotemporal dementia. Neurobiol. Aging 35, 726.e11-726.e19. https://doi.org/10.1016/j.neurobiolaging.2013.09.009
- Depboylu, C., Schafer, M. K., Arias-Carrion, O., Oertel, W. H., Weihe, E. and Hoglinger, G. U. (2011) Possible involvement of complement factor C1q in the clearance of extracellular neuromelanin from the substantia nigra in Parkinson disease. J. Neuropathol. Exp. Neurol. 70, 125-132. https://doi.org/10.1097/NEN.0b013e31820805b9
-
Diniz, L. P., Matias, I. C., Garcia, M. N. and Gomes, F. C. (2014) Astrocytic control of neural circuit formation: highlights on TGF-
${\beta}$ signaling. Neurochem. Int. 78, 18-27. https://doi.org/10.1016/j.neuint.2014.07.008 - Dong, J. H., Ying, G. X. and Zhou, C. F. (2004) Entorhinal deafferentation induces the expression of profilin mRNA in the reactive microglial cells in the hippocampus. Glia 47, 102-108. https://doi.org/10.1002/glia.10355
- Fraser, D. A., Pisalyaput, K. and Tenner, A. J. (2010) C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production. J. Neurochem. 112, 733-743. https://doi.org/10.1111/j.1471-4159.2009.06494.x
- Fricker, M., Neher, J. J., Zhao, J. W., Thery, C., Tolkovsky, A. M. and Brown, G. C. (2012) MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J. Neurosci. 32, 2657-2666. https://doi.org/10.1523/JNEUROSCI.4837-11.2012
- Fu, R., Shen, Q., Xu, P., Luo, J. J. and Tang, Y. (2014) Phagocytosis of microglia in the central nervous system diseases. Mol. Neurobiol. 49, 1422-1434. https://doi.org/10.1007/s12035-013-8620-6
- Gasque, P. (2004) Complement: a unique innate immune sensor for danger signals. Mol. Immunol. 41, 1089-1098. https://doi.org/10.1016/j.molimm.2004.06.011
- Ghosh, R. and Tabrizi, S. J. (2015) Clinical aspects of huntington's disease. Curr. Top. Behav. Neurosci. 22, 3-31.
- Gong, Y. H. and Elliott, J. L. (2000) Metallothionein expression is altered in a transgenic murine model of familial amyotrophic lateral sclerosis. Exp. Neurol. 162, 27-36. https://doi.org/10.1006/exnr.2000.7323
- Hanke, M. L. and Kielian, T. (2011) Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond). 121, 367-387. https://doi.org/10.1042/CS20110164
- Hardiman, O., van den Berg, L. H. and Kiernan, M. C. (2011) Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat. Rev. Neurol. 7, 639-649
- Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., Ji, X. and Lo, E. H. (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551-555. https://doi.org/10.1038/nature18928
- Hong, S., Beja-Glasser, V. F., Nfonoyim, B. M., Frouin, A., Li, S., Ramakrishnan, S., Merry, K. M., Shi, Q., Rosenthal, A., Barres, B. A., Lemere, C. A., Selkoe, D. J. and Stevens, B. (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712-716. https://doi.org/10.1126/science.aad8373
- Huang, B., Wei, W., Wang, G., Gaertig, M. A., Feng, Y., Wang, W., Li, X. J. and Li, S. (2015) Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes. Neuron 85, 1212-1226. https://doi.org/10.1016/j.neuron.2015.02.026
-
Jana, M., Palencia, C. A. and Pahan, K. (2008) Fibrillar amyloid-
${\beta}$ peptides activate microglia via TLR2: implications for Alzheimer's disease. J. Immunol. 181, 7254-7262. https://doi.org/10.4049/jimmunol.181.10.7254 - Jansen, A. H., van Hal, M., Op den Kelder, I. C., Meier, R. T., de Ruiter, A. A., Schut, M. H., Smith, D. L., Grit, C., Brouwer, N., Kamphuis, W., Boddeke, H. W., den Dunnen, W. F., van Roon, W. M., Bates, G. P., Hol, E. M. and Reits, E. A. (2017) Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. Glia 65, 50-61. https://doi.org/10.1002/glia.23050
- Jiang, R., Diaz-Castro, B., Looger, L. L. and Khakh, B. S. (2016) Dysfunctional calcium and glutamate signaling in striatal astrocytes from huntington's disease model mice. J. Neurosci. 36, 3453-3470. https://doi.org/10.1523/JNEUROSCI.3693-15.2016
-
Jones, R. S., Minogue, A. M., Connor, T. J. and Lynch, M. A. (2013) Amyloid-
${\beta}$ -induced astrocytic phagocytosis is mediated by CD36, CD47 and RAGE. J. Neuroimmune Pharmacol. 8, 301-311. https://doi.org/10.1007/s11481-012-9427-3 - Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T. K., David, E., Baruch, K., Lara-Astaiso, D., Toth, B., Itzkovitz, S., Colonna, M., Schwartz, M. and Amit, I. (2017) A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169, 1276-1290.e17. https://doi.org/10.1016/j.cell.2017.05.018
- Kim, J. G., Moon, M. Y., Kim, H. J., Li, Y., Song, D. K., Kim, J. S., Lee, J. Y., Kim, J., Kim, S. C. and Park, J. B. (2012) Ras-related GTPases Rap1 and RhoA collectively induce the phagocytosis of serum-opsonized zymosan particles in macrophages. J. Biol. Chem. 287, 5145-5155. https://doi.org/10.1074/jbc.M111.257634
-
Klegeris, A., Pelech, S., Giasson, B. I., Maguire, J., Zhang, H., Mc-Geer, E. G. and McGeer, P. L. (2008)
${\alpha}$ -synuclein activates stress signaling protein kinases in THP-1 cells and microglia. Neurobiol. Aging 29, 739-752. https://doi.org/10.1016/j.neurobiolaging.2006.11.013 - Lasiene, J. and Yamanaka, K. (2011) Glial cells in amyotrophic lateral sclerosis. Neurol. Res. Int. 2011, 718987.
- Lee, C. Y. and Landreth, G. E. (2010) The role of microglia in amyloid clearance from the AD brain. J Neural Transm (Vienna). 117, 949-960. https://doi.org/10.1007/s00702-010-0433-4
- Lee, Y. I., Li, Y., Mikesh, M., Smith, I., Nave, K. A., Schwab, M. H. and Thompson, W. J. (2016) Neuregulin1 displayed on motor axons regulates terminal Schwann cell-mediated synapse elimination at developing neuromuscular junctions. Proc. Natl. Acad. Sci. U.S.A. 113, E479-E487. https://doi.org/10.1073/pnas.1519156113
- Lee, Y. J., Han, S. B., Nam, S. Y., Oh, K. W. and Hong, J. T. (2010) Inflammation and Alzheimer's disease. Arch. Pharm. Res. 33, 1539-1556. https://doi.org/10.1007/s12272-010-1006-7
- Lees, A. J., Hardy, J. and Revesz, T. (2009) Parkinson's disease. Lancet 373, 2055-2066. https://doi.org/10.1016/S0140-6736(09)60492-X
- Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Munch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., Stevens, B. and Barres, B. A. (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481-487. https://doi.org/10.1038/nature21029
-
Liu, S., Liu, Y., Hao, W., Wolf, L., Kiliaan, A. J., Penke, B., Rube, C. E., Walter, J., Heneka, M. T., Hartmann,T., Menger, M. D. and Fassbender, K. (2012) TLR2 is a primary receptor for Alzheimer's amyloid
${\beta}$ peptide to trigger neuroinflammatory activation. J. Immunol. 188, 1098-1107. https://doi.org/10.4049/jimmunol.1101121 - Lopez-Murcia, F. J., Terni, B. and Llobet, A. (2015) SPARC triggers a cell-autonomous program of synapse elimination. Proc. Natl. Acad. Sci. U.S.A. 112, 13366-13371. https://doi.org/10.1073/pnas.1512202112
- Matarin, M., Salih, D. A., Yasvoina, M., Cummings, D. M., Guelfi, S., Liu, W., Nahaboo Solim, M. A., Moens, T. G., Paublete, R. M., Ali, S. S., Perona, M., Desai, R., Smith, K. J., Latcham, J., Fulleylove, M., Richardson, J. C., Hardy, J. and Edwards, F. A. (2015) A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology. Cell Rep. 10, 633-644. https://doi.org/10.1016/j.celrep.2014.12.041
- McGeer, P. L. and McGeer, E. G. (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol. 126, 479-497. https://doi.org/10.1007/s00401-013-1177-7
-
Meyer-Luehmann, M., Spires-Jones, T. L., Prada, C., Garcia-Alloza, M., de Calignon, A., Rozkalne, A., Koenigsknecht-Talboo, J., Holtzman, D. M., Bacskai, B. J. and Hyman, B. T. (2008) Rapid appearance and local toxicity of amyloid-
${\beta}$ plaques in a mouse model of Alzheimer's disease. Nature 451, 720-724. https://doi.org/10.1038/nature06616 - Michelakakis, H., Xiromerisiou, G., Dardiotis, E., Bozi, M., Vassilatis, D., Kountra, P. M., Patramani, G., Moraitou, M., Papadimitriou, D., Stamboulis, E., Stefanis, L., Zintzaras, E. and Hadjigeorgiou, G. M. (2012) Evidence of an association between the scavenger receptor class B member 2 gene and Parkinson's disease. Mov. Disord. 27, 400-405. https://doi.org/10.1002/mds.24886
- Neher, J. J., Emmrich, J. V., Fricker, M., Mander, P. K., Thery, C. and Brown, G. C. (2013) Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc. Natl. Acad. Sci. U.S.A. 110, E4098-E4107. https://doi.org/10.1073/pnas.1308679110
- Nimmerjahn, A., Kirchhoff, F. and Helmchen, F. (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314-1318. https://doi.org/10.1126/science.1110647
- Noda, M. and Suzumura, A. (2012) Sweepers in the CNS: Microglial migration and phagocytosis in the Alzheimer disease pathogenesis. Int. J. Alzheimers Dis. 2012, 891087.
- Olson, J. K. and Miller, S. D. (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173, 3916-3924. https://doi.org/10.4049/jimmunol.173.6.3916
- Painter, M. M., Atagi, Y., Liu, C. C., Rademakers, R., Xu, H., Fryer, J. D. and Bu, G. (2015) TREM2 in CNS homeostasis and neurodegenerative disease. Mol. Neurodegener. 10, 43. https://doi.org/10.1186/s13024-015-0040-9
- Paolicelli, R. C. and Gross, C. T. (2011) Microglia in development: linking brain wiring to brain environment. Neuron Glia Biol. 7, 77-83. https://doi.org/10.1017/S1740925X12000105
- Park, J. Y., Paik, S. R., Jou, I. and Park, S. M. (2008) Microglial phagocytosis is enhanced by monomeric alpha-synuclein, not aggregated alpha-synuclein: implications for Parkinson's disease. Glia 56, 1215-1223. https://doi.org/10.1002/glia.20691
- Pearce, M. M., Spartz, E. J., Hong, W., Luo, L. and Kopito, R. R. (2015) Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain. Nat. Commun. 6, 6768. https://doi.org/10.1038/ncomms7768
- Phatnani, H. and Maniatis, T. (2015) Astrocytes in neurodegenerative disease. Cold Spring Harb Perspect Biol. 7, 1-17
- Philips, T. and Robberecht, W. (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 10, 253-263. https://doi.org/10.1016/S1474-4422(11)70015-1
-
Pihlaja, R., Koistinaho, J., Malm, T., Sikkila, H., Vainio, S. and Koistinaho, M. (2008) Transplanted astrocytes internalize deposited
${\beta}$ -amyloid peptides in a transgenic mouse model of Alzheimer's disease. Glia 56, 154-163. https://doi.org/10.1002/glia.20599 -
Pomilio, C., Pavia, P., Gorojod, R. M., Vinuesa, A., Alaimo, A., Galvan, V., Kotler, M. L., Beauquis, J. and Saravia, F. (2016) Glial alterations from early to late stages in a model of Alzheimer's disease: Evidence of autophagy involvement in
$A{\beta}$ internalization. Hippocampus 26, 194-210. https://doi.org/10.1002/hipo.22503 - Purice, M. D., Speese, S. D. and Logan, M. A. (2016) Delayed glial clearance of degenerating axons in aged Drosophila is due to reduced PI3K/Draper activity. Nat. Commun. 7, 12871. https://doi.org/10.1038/ncomms12871
- Radford, R. A., Morsch, M., Rayner, S. L., Cole, N. J., Pountney, D. L. and Chung, R. S. (2015) The established and emerging roles of astrocytes and microglia in amyotrophic lateral sclerosis and frontotemporal dementia. Front Cell Neurosci. 9, 414.
- Rocha, S. M., Cristovao, A. C., Campos, F. L., Fonseca, C. P. and Baltazar, G. (2012) Astrocyte-derived GDNF is a potent inhibitor of microglial activation. Neurobiol. Dis. 47, 407-415. https://doi.org/10.1016/j.nbd.2012.04.014
-
Rojanathammanee, L., Murphy, E. J. and Combs, C. K. (2011) Expression of mutant
${\alpha}$ -synuclein modulates microglial phenotype in vitro. J. Neuroinflammation 8, 44. https://doi.org/10.1186/1742-2094-8-44 -
Salminen, A., Ojala, J., Kauppinen, A., Kaarniranta, K. and Suuronen, T. (2009) Inflammation in Alzheimer's disease: amyloid-
${\beta}$ oligomers trigger innate immunity defence via pattern recognition receptors. Prog. Neurobiol. 87, 181-194. https://doi.org/10.1016/j.pneurobio.2009.01.001 - Savage, J. C., Jay, T., Goduni, E., Quigley, C., Mariani, M. M., Malm, T., Ransohoff, R. M., Lamb, B. T. and Landreth, G. E. (2015) Nuclear receptors license phagocytosis by trem2+ myeloid cells in mouse models of Alzheimer's disease. J. Neurosci. 35, 6532-6543. https://doi.org/10.1523/JNEUROSCI.4586-14.2015
- Schafer, D. P., Lehrman, E. K., Kautzman, A. G., Koyama, R., Mardinly, A. R., Yamasaki, R., Ransohoff, R. M., Greenberg, M. E., Barres, B. A. and Stevens, B. (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691-705. https://doi.org/10.1016/j.neuron.2012.03.026
- Selkoe, D. J. and Hardy, J. (2016) The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med. 8, 595-608. https://doi.org/10.15252/emmm.201606210
- Shin, J. Y., Fang, Z. H., Yu, Z. X., Wang, C. E., Li, S. H. and Li, X. J. (2005) Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J. Cell Biol. 171, 1001-1012. https://doi.org/10.1083/jcb.200508072
- Sofroniew, M. V. (2015) Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16, 249-263. https://doi.org/10.1038/nrn3898
- Sofroniew, M. V. and Vinters, H. V. (2010) Astrocytes: biology and pathology. Acta Neuropathol. 119, 7-35. https://doi.org/10.1007/s00401-009-0619-8
-
Sollvander, S., Nikitidou, E., Brolin, R., Soderberg, L., Sehlin, D., Lannfelt, L. and Erlandsson, A. (2016) Accumulation of amyloid-
${\beta}$ by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons. Mol. Neurodegener. 11, 38. https://doi.org/10.1186/s13024-016-0098-z - Song, J. W., Misgeld, T., Kang, H., Knecht, S., Lu, J., Cao, Y., Cotman, S. L., Bishop, D. L. and Lichtman, J. W. (2008) Lysosomal activity associated with developmental axon pruning. J. Neurosci. 28, 8993-9001. https://doi.org/10.1523/JNEUROSCI.0720-08.2008
- Stephan, A. H., Madison, D. V., Mateos, J. M., Fraser, D. A., Lovelett, E. A., Coutellier, L., Kim, L., Tsai, H. H., Huang, E. J., Rowitch, D. H., Berns, D. S., Tenner, A. J., Shamloo, M. and Barres, B. A. (2013) A dramatic increase of C1q protein in the CNS during normal aging. J. Neurosci. 33, 13460-13474. https://doi.org/10.1523/JNEUROSCI.1333-13.2013
- Stevens, B., Allen, N. J., Vazquez, L. E., Howell, G. R., Christopherson, K. S., Nouri, N., Micheva, K. D., Mehalow, A. K., Huberman, A. D., Stafford, B., Sher, A., Litke, A. M., Lambris, J. D., Smith, S. J., John, S. W. and Barres, B. A. (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164-1178. https://doi.org/10.1016/j.cell.2007.10.036
- Streit, W. J., Walter, S. A. and Pennell, N. A. (1999) Reactive microgliosis. Prog. Neurobiol. 57, 563-581. https://doi.org/10.1016/S0301-0082(98)00069-0
-
Suh, E. C., Jung, Y. J., Kim, Y. A., Park, E. M., Lee, S. J. and Lee, K. E. (2013) Knockout of Toll-like receptor 2 attenuates
$A{\beta}25$ -35-induced neurotoxicity in organotypic hippocampal slice cultures. Neurochem. Int. 63, 818-825. https://doi.org/10.1016/j.neuint.2013.10.007 -
Tahara, K., Kim, H. D., Jin, J. J., Maxwell, J. A., Li, L. and Fukuchi, K. (2006) Role of toll-like receptor signalling in
$A{\beta}$ uptake and clearance. Brain 129, 3006-3019. https://doi.org/10.1093/brain/awl249 - Tang, S. C., Arumugam, T. V., Xu, X., Cheng, A., Mughal, M. R., Jo, D. G., Lathia, J. D., Siler, D. A., Chigurupati, S., Ouyang, X., Magnus, T., Camandola, S. and Mattson, M. P. (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc. Natl. Acad. Sci. U.S.A. 104, 13798-13803. https://doi.org/10.1073/pnas.0702553104
- Tasdemir-Yilmaz, O. E. and Freeman, M. R. (2014) Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes Dev. 28, 20-33. https://doi.org/10.1101/gad.229518.113
- Terni, B., Lopez-Murcia, F. J. and Llobet, A. (2017) Role of neuron-glia interactions in developmental synapse elimination. Brain Res. Bull. 129, 74-81. https://doi.org/10.1016/j.brainresbull.2016.08.017
- Tong, X., Ao, Y., Faas, G. C., Nwaobi, S. E., Xu, J., Haustein, M. D., Anderson, M. A., Mody, I., Olsen, M. L., Sofroniew, M. V. and Khakh, B. S. (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. Nat. Neurosci. 17, 694-703. https://doi.org/10.1038/nn.3691
- Turner, M. R., Cagnin, A., Turkheimer, F. E., Miller, C. C., Shaw, C. E., Brooks, D. J., Leigh, P. N. and Banati, R. B. (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol. Dis. 15, 601-609. https://doi.org/10.1016/j.nbd.2003.12.012
- Ulland, T. K., Song, W. M., Huang, S. C., Ulrich, J. D., Sergushichev, A., Beatty, W. L., Loboda, A. A., Zhou, Y., Cairns, N. J., Kambal, A., Loginicheva, E., Gilfillan, S., Cella, M., Virgin, H. W., Unanue, E. R., Wang, Y., Artyomov, M. N., Holtzman, D. M. and Colonna, M. (2017) TREM2 maintains microglial metabolic fitness in Alzheimer's disease. Cell 170, 649-663.e13. https://doi.org/10.1016/j.cell.2017.07.023
- Ulrich, J. D. and Holtzman, D. M. (2016) TREM2 function in Alzheimer's disease and neurodegeneration. ACS Chem. Neurosci. 7, 420-427. https://doi.org/10.1021/acschemneuro.5b00313
- Wang, Y., Cella, M., Mallinson, K., Ulrich, J. D., Young, K. L., Robinette, M. L., Gilfillan, S., Krishnan, G. M., Sudhakar, S., Zinselmeyer, B. H., Holtzman, D. M., Cirrito, J. R. and Colonna, M. (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160, 1061-1071. https://doi.org/10.1016/j.cell.2015.01.049
- Weydt, P., Yuen, E. C., Ransom, B. R. and Moller, T. (2004) Increased cytotoxic potential of microglia from ALS-transgenic mice. Glia 48, 179-182. https://doi.org/10.1002/glia.20062
-
Wyss-Coray, T., Loike, J. D., Brionne, T. C., Lu, E., Anankov, R., Yan, F., Silverstein, S. C. and Husemann, J. (2003) Adult mouse astrocytes degrade amyloid-
${\beta}$ in vitro and in situ. Nat. Med. 9, 453-457. https://doi.org/10.1038/nm838 - Yamanaka, K., Chun, S. J., Boillee, S., Fujimori-Tonou, N., Yamashita, H., Gutmann, D. H., Takahashi, R., Misawa, H. and Cleveland, D. W. (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat. Neurosci. 11, 251-253. https://doi.org/10.1038/nn2047
- Yang, J., Yang, H., Liu, Y., Li, X., Qin, L., Lou, H., Duan, S. and Wang, H. (2016a) Astrocytes contribute to synapse elimination via type 2 inositol 1,4,5-trisphosphate receptor-dependent release of ATP. Elife 5, e15043.
-
Yang, L., Liu, C. C., Zheng, H., Kanekiyo, T., Atagi, Y., Jia, L., Wang, D., N'Songo, A., Can, D., Xu, H., Chen, X. F. and Bu, G. (2016b) LRP1 modulates the microglial immune response via regulation of JNK and NF-
${\kappa}B$ signaling pathways. J. Neuroinflammation 13, 304. https://doi.org/10.1186/s12974-016-0772-7 -
Zhang, B., Tian, M., Zheng, H., Zhen, Y., Yue, Y., Li, T., Li, S., Marcantonio, E. R. and Xie, Z. (2013) Effects of anesthetic isoflurane and desflurane on human cerebrospinal fluid
$A{\beta}$ and${\tau}$ level. Anesthesiology 119, 52-60. https://doi.org/10.1097/ALN.0b013e31828ce55d - Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., O'Keeffe, S., Phatnani, H. P., Guarnieri, P., Caneda, C., Ruderisch, N., Deng, S., Liddelow, S. A., Zhang, C., Daneman, R., Maniatis, T., Barres, B. A. and Wu, J. Q. (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929-11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014
Cited by
- Bidirectional Microglia–Neuron Communication in Health and Disease vol.12, pp.1662-5102, 2018, https://doi.org/10.3389/fncel.2018.00323
- α-Synuclein and Glia in Parkinson’s Disease: A Beneficial or a Detrimental Duet for the Endo-Lysosomal System? vol.39, pp.2, 2019, https://doi.org/10.1007/s10571-019-00649-9
- Glutamatergic synaptic plasticity and dysfunction in Alzheimer disease : Emerging mechanisms vol.91, pp.3, 2018, https://doi.org/10.1212/wnl.0000000000005807
- Regenerative Effects of Heme Oxygenase Metabolites on Neuroinflammatory Diseases vol.20, pp.1, 2018, https://doi.org/10.3390/ijms20010078
- The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling vol.11, pp.None, 2018, https://doi.org/10.3389/fnagi.2019.00143
- Ceramides in Parkinson’s Disease: From Recent Evidence to New Hypotheses vol.13, pp.None, 2018, https://doi.org/10.3389/fnins.2019.00330
- The Role of Astrocytes in the Central Nervous System Focused on BK Channel and Heme Oxygenase Metabolites: A Review vol.8, pp.5, 2019, https://doi.org/10.3390/antiox8050121
- Glial phagocytic clearance in Parkinson’s disease vol.14, pp.None, 2018, https://doi.org/10.1186/s13024-019-0314-8
- Phagocytosis of Apoptotic Substrates Is Accompanied by Proliferation of Cultured Rat Primary Astrocytes vol.56, pp.1, 2020, https://doi.org/10.1134/s0022093020010111
- Calcium Dynamics in Astrocytes During Cell Injury vol.8, pp.None, 2018, https://doi.org/10.3389/fbioe.2020.00912
- Microglia Play an Essential Role in Synapse Development and Neuron Maturation in Tissue-Engineered Neural Tissues vol.14, pp.None, 2018, https://doi.org/10.3389/fnins.2020.586452
- Microglial Activation in the Retina of a Triple-Transgenic Alzheimer’s Disease Mouse Model (3xTg-AD) vol.21, pp.3, 2018, https://doi.org/10.3390/ijms21030816
- The role of glia in protein aggregation vol.143, pp.None, 2018, https://doi.org/10.1016/j.nbd.2020.105015
- Oxidative Stress Modulates Apoptotic Substrate Phagocytosis by Primary Rat Astrocytes vol.56, pp.6, 2018, https://doi.org/10.1134/s0022093020060022
- The synthetic steroid tibolone exerts sex-specific regulation of astrocyte phagocytosis under basal conditions and after an inflammatory challenge vol.17, pp.None, 2018, https://doi.org/10.1186/s12974-020-1719-6
- Chlamydia muridarum Can Invade the Central Nervous System via the Olfactory and Trigeminal Nerves and Infect Peripheral Nerve Glial Cells vol.10, pp.None, 2021, https://doi.org/10.3389/fcimb.2020.607779
- Shaping Neuronal Fate: Functional Heterogeneity of Direct Microglia-Neuron Interactions vol.109, pp.2, 2018, https://doi.org/10.1016/j.neuron.2020.11.007
- Phagocytosis by Peripheral Glia: Importance for Nervous System Functions and Implications in Injury and Disease vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.660259
- Extracellular clusterin limits the uptake of α‐synuclein fibrils by murine and human astrocytes vol.69, pp.3, 2018, https://doi.org/10.1002/glia.23920
- Astrocytes in Alzheimer’s Disease: Pathological Significance and Molecular Pathways vol.10, pp.3, 2018, https://doi.org/10.3390/cells10030540
- The Cellular Senescence Stress Response in Post-Mitotic Brain Cells: Cell Survival at the Expense of Tissue Degeneration vol.11, pp.3, 2021, https://doi.org/10.3390/life11030229
- Late Passage Cultivation Induces Aged Astrocyte Phenotypes in Rat Primary Cultured Cells vol.29, pp.2, 2018, https://doi.org/10.4062/biomolther.2020.175
- A Novel Phagocytic Role of Astrocytes in Activity-dependent Elimination of Mature Excitatory Synapses vol.37, pp.8, 2018, https://doi.org/10.1007/s12264-021-00690-z
- Microglial dyshomeostasis drives perineuronal net and synaptic loss in a CSF1R +/− mouse model of ALSP, which can be rescued via CSF1R inhibitors vol.7, pp.35, 2018, https://doi.org/10.1126/sciadv.abg1601
- Phagocytic Activity of Rat Primary Astrocytes Is Regulated by Insulin and Ganglioside GM1 vol.57, pp.5, 2018, https://doi.org/10.1134/s0022093021050094
- Stroke subtype-dependent synapse elimination by reactive gliosis in mice vol.12, pp.1, 2018, https://doi.org/10.1038/s41467-021-27248-x
- Antimicrobial responses of peripheral and central nervous system glia against Staphylococcus aureus vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-90252-0