DOI QR코드

DOI QR Code

An Experimental Test for Air-tightness Performance Evaluation of Cracked Concrete Vacuum Tube Structures

콘크리트 진공튜브의 균열 발생에 따른 기밀성능 평가 실험

  • 박주남 (원광대학교 토목환경공학과) ;
  • 박형준 (원광대학교 토목환경공학과)
  • Received : 2018.01.02
  • Accepted : 2018.03.15
  • Published : 2018.06.01

Abstract

Super-speed vacuum tube system, where the air resistance is minimized to obtain high speed of the vehicle, is considered to be a viable alternative transportation system. Air-tightness is one of the most important design requirements of the system, because the internal pressure of the system needs to be maintained significantly lower than the atmospheric pressure. This study performed an experimental test, where a series of concrete tube specimens were applied by external loads to induce cracks and the effective air-permeability of the cracked tube structures were measured. The test results indicates that the information on the length and the width of the load-induced cracks are not enough to anticipate the system air-tightness, whereas the load-induced displacement has higher correlation with the systems air-tightness. Based on these results, a direction of future research for effect of the load-induced cracks on the system air-tightness is suggested.

튜브 내부의 공기저항을 최소화해 운송체의 빠른 이동을 가능하게 해주는 초고속 진공튜브 시스템(Super-speed vacuum tube system)은 고효율 친환경성으로 인해 차세대 운송시스템으로 주목받고 있다. 초고속 진공튜브 시스템은 외부에 비해 튜브 내부의 압력을 매우 낮게 유지할 필요가 있으므로 기밀성의 확보가 무엇보다 중요한 설계 요건이라 할 수 있다. 본 연구에서는 균열의 발생이 진공튜브 구조물 내부의 압력 변화에 어떠한 영향을 미치는지 고찰하기 위해 일련의 콘크리트 튜브 구조물에 대해 균열에 따른 내부 압력의 변화를 측정하는 실험을 실시하였다. 실험결과 균열의 길이 또는 균열폭에 대한 정보만으로는 시스템의 기밀성에 영향을 주는 균열의 성질을 표현하기에 부족한 것으로 나타났으며, 반면에 발생된 구조물의 변위와 등가투기계수와의 관계는 상대적으로 높은 상관관계를 가지는 것으로 나타났다. 이와 같은 실험 결과를 바탕으로 설계 단계에서 시스템의 기밀성을 예측하기 위한 향후 연구방향을 제시하였다.

Keywords

References

  1. Choi, J., Han, O. and Park, J. (2016). "Development of air inflow model for airtightness performance evaluation of concrete tube structures with cracks." Fourth International Conference on Sustainable Construction Materials and Technologies, 7-11 August 2016. Las Vegas, USA.
  2. Frosch, R. J. (1999). "Another look at cracking and crack control in reinforced concrete." ACI Structuctural Journal, Vol. 96, No. 3, pp. 437-442.
  3. Okamoto, K., Hayakawa, S. and Kamimura, R. (1995). "Experimental study of air leakage from cracks in reinforced concrete walls." Nuclear Engineering and Design, Vol. 156, No. 1/2, pp. 159-165. https://doi.org/10.1016/0029-5493(94)00941-Q
  4. Park, J., Kim, L. H., Nam, S. W. and Yeo, I. (2013). "Performance evaluation of airtightness in concrete tube structures for super-speed train systems." Magazine of Concrete Research, Vol. 65, No. 9, pp. 535-545. https://doi.org/10.1680/macr.12.00161
  5. Park, J., Nam, S. W., Kim, L. H. and Yeo, I. (2011). "Air-tightness evaluation of tube structures for super-speed tube railway systems: I. analytical modeling and material test." Journal of the Korean Society for Railway, Vol. 14, No. 2, pp. 143-150 (in Korean). https://doi.org/10.7782/JKSR.2011.14.2.143
  6. Rizkalla, S. H., Lau, B. L. and Simmonds, S. H. (1984). "Air leakage characteristics in reinforced concrete." ASCE Journal of Structural Engineering, Vol. 110, No. 5, pp. 1149-1162. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:5(1149)
  7. So, H. S. and Soh, Y. S. (2003). "Permeability of water, osygen and chloride ion of concrete containing pozzolanic admizture." Journal of Architectural Institute of Korea, Vol. 19, No. 11, pp. 117-124 (in Korean).
  8. Soppe, T. E. and Hutchinson, T. C. (2012). "Assessment of gas leakage rates through damaged reinforced-concrete walls." Journal of Materials in Civil Engineering, Vol. 24, No. 5, pp. 560-567. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000409
  9. Suzuki, T., Takiguch, K. and Hotta, H. (1992). "Leakage of gas through concrete cracks." Nuclear Engineering and Design, Vol. 133, No. 1, pp. 121-130. https://doi.org/10.1016/0029-5493(92)90096-E
  10. Ziari, A. and Kianoush, M. R. (2009). "Investigation of flexural cracking and leakage in RC liquid containing structures." Engineering Structures, Vol. 31, No. 5, pp. 1056-1067. https://doi.org/10.1016/j.engstruct.2008.12.019