DOI QR코드

DOI QR Code

Fundamental Cultural Characteristics of Chlorociboria spp. Native to Korea

한국에 자생하는 녹청균류의 기초 배양 특성

  • Jeon, Sung-Min ;
  • Ka, Kang-Hyeon (Special Forest Products Division, National Institute of Forest Science) ;
  • Wang, Eun-Jin (LOGONE Bio Convergence Research Foundation) ;
  • Ryoo, Rhim (Special Forest Products Division, National Institute of Forest Science) ;
  • Jang, Yeongseon (Special Forest Products Division, National Institute of Forest Science)
  • 전성민 ;
  • 가강현 (국립산림과학원 산림소득자원연구과) ;
  • 왕은진 (록원바이오융합연구재단) ;
  • 유림 (국립산림과학원 산림소득자원연구과) ;
  • 장영선 (국립산림과학원 산림소득자원연구과)
  • Received : 2018.05.16
  • Accepted : 2018.05.25
  • Published : 2018.06.01

Abstract

Members of Chlorociboria are soft-rot ascomycetes that produce blue-green pigment. We investigated the growth characteristics of two Korean species of Chlorociboria, eight strains of Chlorociboria aeruginascens and Chlorociboria poutoensis, under various culture conditions (solid media, temperature, pH) and screened them for extracellular enzyme activity. Although the growth rate was slow, all tested strains of Chlorociboria spp. grew well on potato dextrose agar (PDA; 16.3~42.6 mm after 60 days) or Sabouraud dextrose agar (SDA), but not on malt extract agar (MEA). Compared with C. aeruginascens strains, C. poutoensis strains exhibited higher expression of blue-green pigments on both PDA and SDA media. The optimal temperature for mycelial growth was $20{\sim}25^{\circ}C$, and mycelial growth was lower at $30^{\circ}C$ than at $10^{\circ}C$. All strains tended to have increased mycelial growth as the incubation temperature increased in the range of 10 to $20^{\circ}C$. The optimal pH of potato dextrose broth (PDB) for mycelial growth varied according to the strain under static culture conditions. Maximum biomass production was obtained at pH 6.0 for NIFoS 579 ($114.3{\pm}5.1mg/60days$), but it maintained a stable pigment expression under a broad pH spectrum. The activities of both cellulase and laccase were observed in all tested strains of Chlorociboria spp. Enzyme activities of NIFoS 579 were remarkably higher than those of the other strains. From these results, we suggest that C. poutoensis NIFoS 579 is a potential candidate for use as a source of natural blue-green dye.

녹청균류(Chlorociboria spp.)는 청록색 색소를 생산할 수 있는 연부후성 자낭균류로, 한국에 자생하는 녹청균류를 분리하여 다양한 배양 조건에서 균의 생장 특성과 세포외효소 활성을 조사하였다. 비록 균사 생장 속도는 느렸지만, 시험 균주들은 malt extract agar (MEA) 배지를 제외한 potato dextrose agar (PDA)와 Sabouraud dextrose agar (SDA) 배지에서 비교적 잘 생장하였다. PDA와 SDA 배지 상에서 C. poutoensis의 청록색 색소 발현도는 C. aeruginascens 보다 높았다. 최적 생장 온도는 $20{\sim}25^{\circ}C$이며, $10^{\circ}C$보다 $30^{\circ}C$에서 생장력이 약했다. $10{\sim}20^{\circ}C$에서 모든 균주는 배양 온도가 증가함에 따라 균사 생장력도 증가하는 경향을 보였다. 정치배양 시 potato dextrose broth (PDB) 배지의 최적 생장 pH는 균주에 따라 다르게 나타났다. 60일 배양체의 균체량이 가장 높게 나타난 균주는 NIFoS 579 ($114.3{\pm}5.1mg$)로, 비교적 넓은 pH 범위에서도 청록색 색소 발현을 안정적으로 유지하였다. 녹청균류의 모든 시험 균주은 cellulase와 laccase 활성을 나타냈으며, 다른 균주들보다 NIFoS 579의 효소 활성이 확연히 높았다. 이러한 결과들로부터 NIFoS 579는 청록색 천연 염료제로 이용 가능한 후보 균주라 생각한다.

Keywords

References

  1. Robinson SC, Laks PE. Wood species affects laboratory colonization rates of Chlorociboria sp. Int Biodeterior Biodegradation 2010;64:305-8. https://doi.org/10.1016/j.ibiod.2010.03.003
  2. Tudor D. Fungal pigment formation in wood substrate [dissertation]. Toronto (ON): University of Toronto; 2013.
  3. Gutierrez SM, Robinson SC. Microscopic analysis of pigments extracted from spalting fungi. J Fungi (Basel) 2017;3:15. https://doi.org/10.3390/jof3010015
  4. Ka KH, Jeon SM, Ryoo R, Ryu SH, Kim MG, Bak WC, Park JH, Koo CD, Eom AH. Management of genetic resources of forest microorganisms. Seoul: Korea Forest Research Institute; 2011.
  5. Buczacki S, Shields C, Ovenden D. Collins fungi guide: the most complete field guide to the mushrooms and toadstools of Britain & Ireland. London: Collins; 2012.
  6. Royal Botanic Gardens, Kew. Species fungorum [Internet]. London: Royal Botanic Gardens, Kew; 2018 [cited 2018 May 11]. Available from: http://www.speciesfungorum.org/Names/Names.asp.
  7. Tudor D, Margaritescu S, Sanchez-Ramirez S, Robinson SC, Cooper PA, Moncalvo JM. Morphological and molecular characterization of the two known North American Chlorociboria species and their anamorphs. Fungal Biol 2014;118:732-42. https://doi.org/10.1016/j.funbio.2014.05.003
  8. Liu D, Wang H, Park JS, Hur JS. The genus Chlorociboria, blue-green micromycetes in South Korea. Mycobiology 2017;45:57-63. https://doi.org/10.5941/MYCO.2017.45.2.57
  9. Robinson SC, Hinsch E, Weber G, Leipus K, Cerney D. Wood colorization through pressure treating: the potential of extracted colorants from spalting fungi as a replacement for woodworkers' aniline dyes. Materials (Basel) 2014;7:5427-37. https://doi.org/10.3390/ma7085427
  10. Weber GL, Boonloed A, Naas KM, Koesdjojo MT, Remeho VT, Robinson SC. A method to stimulate production of extracellular pigments from wood-degrading fungi using a water carrier. Curr Res Environ Appl Mycol 2016;6:218-30. https://doi.org/10.5943/cream/6/3/10
  11. Hinsch EM. A comparative analysis of extracted fungal pigments and commercially available dyes for colorizing textiles [dissertation]. Corvallis (OR): Oregon State University; 2015.
  12. Donner CD, Cuzzupe AN, Falzon CL, Gill M. Investigations towards the synthesis of xylindein, a blue-green pigment from the fungus Chlorociboria aeruginosa. Tetrahedron 2012;68:2799-805. https://doi.org/10.1016/j.tet.2012.02.009
  13. Robinson SC, Hinsch E, Weber G, Freitas S. Method of extraction and resolubilisation of pigments from Chlorociboria aeruginosa and Scytalidium cuboideum, two prolific spalting fungi. Color Technol 2014;130:221-5. https://doi.org/10.1111/cote.12080
  14. Robinson S. Spalting, science, and fungal extracts-retooling an ancient art for a green planet. FUNGI 2015;8:20-7.
  15. Blanchette RA, Wilmering AM, Baumeister M. The use of green-stained wood caused by the fungus Chlorociboria in intarsia1 masterpieces from the 15th century. Holzforschung 1992:46; 225-32. https://doi.org/10.1515/hfsg.1992.46.3.225
  16. Weber G, Chen HL, Hinsch E, Freitas S, Robinson S. Pigments extracted from the wood-staining fungi Chlorociboria aerubinosa, Scytalidium cuboideum and S. ganodermophthorum show potential for use as textile dyes. Color Technol 2014;130:445-52. https://doi.org/10.1111/cote.12110
  17. Hinsch EM, Weber G, Chen HL, Robinson SC. Colorfastness of extracted wood-staining fungal pigments on fabrics. J Text Apparel Technol Manag 2015;9:1-11.
  18. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sminsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-22.
  19. Jeon SM, Ka KH. Mycelial growth and extracellular enzyme activities of wood- decaying mushroom strains on solid media. Kor J Mycol 2014;42:40-9. https://doi.org/10.4489/KJM.2014.42.1.40
  20. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using gram's iodine. Curr Microbiol 2008;57:503-7. https://doi.org/10.1007/s00284-008-9276-8
  21. Crowe JD, Olsson S. Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorecens strains and a range of chemical treatments. Appl Environ Microbiol 2001;67:2088-94. https://doi.org/10.1128/AEM.67.5.2088-2094.2001
  22. Robinson SC, Tudor D, Snider H, Cooper PA. Stimulating growth and xylindein production of Chlorociboria aeruginascens in agar-based systems. AMB Express 2012;2:15. https://doi.org/10.1186/2191-0855-2-15
  23. Jeon SM, Kim MS, Ka KH. Effects of medium, temperature and pH on mycelial growth and cellulase activity of ectomycorrhizal fungi from Korean forests. Kor J Mycol 2012;40:191-203. https://doi.org/10.4489/KJM.2012.40.4.191
  24. Korean Culture Center of Microorganisms. Search and service applications [Internet]. Seoul: Korean Culture Center of Microorganisms; 2018 [cited 2018 May 24]. Available from: http://www.kccm.or.kr/sub12_view.php3?f_kccm=11502.
  25. Kuhad RC, Gupta R, Singh A. Microbial cellulases and their industrial applications. Enzyme Res 2011;2011: Article ID 280696.
  26. Rameshaiah GN, Reddy ML. Applications of ligninolytic enzymes from a white-rot fungus Trametes versicolor. Univers J Environ Res Technol 2015;5:1-7.