DOI QR코드

DOI QR Code

Cesium removal in water using magnetic materials ; A review

자성체 물질을 이용한 수중의 세슘제거 동향

  • Received : 2018.09.28
  • Accepted : 2018.12.03
  • Published : 2018.12.31

Abstract

Even after the Fukushima nuclear accident in 2011, the rate of production of electric energy using nuclear energy is increasing, but there is a great danger such as the radioactive waste produced when using nuclear power, the catastrophic accident of nuclear power plant, and connection with nuclear weapons. In particular, Cs present in the ionic form of alkaline elements has a long half-life (30.17 years) because it is readily absorbed by the organism and emits intense gamma rays, thus presenting a serious radiation hazard. Therefore, it must be completely removed before it can be released into the natural ecosystem, because it can adversely affect not only humans but also natural ecosystems. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. In addition, researches have been doing to synthesize magnetic materials with adsorbents such as HCF and PB, and it shows a great effect in the removal rate of Cs present in wastewater or the maximum Cs adsorption amount. In particular, when a magnetic material was applied, excellent results were obtained in which only Cs was selectively removed from other cations. However, new problems such as applicability in the sea where Cs is directly released, applicability in various pH ranges, and failure to preserve the magnetizing force possessed by the magnetic body have been found. However, researches using ferromagnetic field with stronger magnetic properties than those of magnetic bodies is considered to be insufficient. Therefore, it is considered that if the researches combining the ferromagnetic field with the magnetization ability and functional adsorbents more actively, the radioactive material Cs which adversely affects the natural ecosystem can be effectively removed.

Keywords

SOOOB6_2018_v21n6_395_f0001.png 이미지

Fig. 2 Status of Domestic electric power. [2]

SOOOB6_2018_v21n6_395_f0002.png 이미지

Fig. 3 The collapse diagram of Cs137 [12]

SOOOB6_2018_v21n6_395_f0003.png 이미지

Fig. 4 Hysteresis curve according to magnetic type. [17]

SOOOB6_2018_v21n6_395_f0004.png 이미지

Fig. 5 Removal of Cs (Vi) Using a magnetic material. [23]

SOOOB6_2018_v21n6_395_f0005.png 이미지

Fig. 6 Process for the perparation of NaCuHCF-MNPs to remove Cs. [28]

SOOOB6_2018_v21n6_395_f0006.png 이미지

Fig. 7 Mixture of NaCuHCF-MNP (left), A soltuion of NaCuHCF-MNP separated through a magnet (Right). [2]

SOOOB6_2018_v21n6_395_f0007.png 이미지

Fig. 8 Manufacturing process of magnetic nano-sized zeolite. [29]

SOOOB6_2018_v21n6_395_f0008.png 이미지

Fig. 9 Magnetic nano-sized zeolite photographed by TEM microscope. [29]

SOOOB6_2018_v21n6_395_f0009.png 이미지

Fig. 10 Magnetic Prussian blue/Graphene oxide reaction process and magnetic spearation process. [34]

SOOOB6_2018_v21n6_395_f0010.png 이미지

Fig. 11 Manufacturing process of PB/Fe3O4/GO. [35]

SOOOB6_2018_v21n6_395_f0011.png 이미지

Fig. 1 Status of Domestic Nuclear Power Plants. [2]

SOOOB6_2018_v21n6_395_f0012.png 이미지

Fig. 12 (Left) Magnetic separation of PB/Fe3O4, (Right) Magnetic separation of PB/Fe3O4/GO in water. [35]

SOOOB6_2018_v21n6_395_f0013.png 이미지

Fig. 13 (a) The direction of the ferromagnetic moment before the external magnetic field is given, (b) The moment inside the ferromagnetic body after the external magnetic field is given. [36]

Table 1. The adsorption amount of Cs according to the form of Zeolite

SOOOB6_2018_v21n6_395_t0001.png 이미지

Table 2. Graph of magnetic behavior, magnetic direction, and moment of magnetic materials. [37]

SOOOB6_2018_v21n6_395_t0002.png 이미지

Table 3. Previous studies in which Cs was removed from water by synthesis of Magnetic material and adsorbent

SOOOB6_2018_v21n6_395_t0003.png 이미지

References

  1. IAEA, "Nuclear Power Reactors in the World : 2015 Edition", International Atomic Energy Agency, pp. 19, (2015).
  2. Y. I. Lee, "Nuclear Power in Korea & Vision for the Future", The Korean Physical Sociey, (2011).
  3. M. Manolopoulou, E. Vagena, S. Stoulos, A. Ioannidou, C. Papastefanou, "Radioiodine and radiocesium in Thessaloniki, Northern Greece due to the Fukushima nuclear accident", J. Environ. Radioact, 102, pp. 796-797, (2011). https://doi.org/10.1016/j.jenvrad.2011.04.010
  4. A. Khannanov, V. V. Nekljudov, B. Gareev, A. Kiiamov, J. M. Tour, A. M. Dimiev, "Oxidatively modified carbon as efficient material for removing radio nuclides from water", Carbon, 115, pp. 394-401, 2017. https://doi.org/10.1016/j.carbon.2017.01.025
  5. T. Charles, C. T. Garten, D. M. Hamby, K. A. Higley, T. G. Hinton, D. I. Kaplan, D. J. Rowan, R. G. Schreckhise, "Cesium-137 in the Environment - Radioecology and Approaches to Assessment and Management : (Report No. 154)", National Council on Radiation Protection and Measurements, 2014.
  6. H. G. Mobtaker, T. Yousefi, S. M. Pakzad, "Cesium removal from nuclear waste using a magnetical CuHCNPAN nano composite", Journal of Nuclear Materials, 482, pp. 306-312, (2016). https://doi.org/10.1016/j.jnucmat.2016.10.034
  7. Y. Park, Y. C. Lee, W. S. Shina, S. J. Choi, "Removal of cobalt, strontium and cesium from radioactive laundry wastewater", J. Chem. Eng, 162, pp. 685-695, (2010). https://doi.org/10.1016/j.cej.2010.06.026
  8. G. Gurboga, H. Tel, Y. Altas, "Sorption studies of cesium on TiO2, SiO2 mixed gel spheres", Sep. Purif. Technol, 47, pp. 96-104, (2006). https://doi.org/10.1016/j.seppur.2005.06.008
  9. R. R. Sheha, "Synthesis and characterization of magnetic hexacyanoferrate (II) polymeric nanocomposite for separation of cesium from radioactive waste solutions", Journal of Colloid and Interface Science, 388(1), pp. 21-30, (2012). https://doi.org/10.1016/j.jcis.2012.08.042
  10. S. P. Paker, McGraw-Hill Encyclopedia of Chemistry, McGraw Hill, New York, (1983).
  11. S. Imoto, "Chemical state of fisson products in irradiated UO2", J. of Nuclear Materials, 5, pp. 19-27, (1986).
  12. E. B. Podgorsak, "Modes of Radioactive Decay", Radiation Physics for Medical Physicists, pp. 475-521, (2009).
  13. IAEA, "International Atomic Energy Agency, New Developments and Improvements in Processing of Problematic Radioactive Waste", IAEA-TECDOC-1579, (2007).
  14. T. Sangvanich, V. Sukwarotwat, R. J. Wiacek, R. M. rudzien, G. E. Fryxell, R. S. Addleman, C. Timchalk, A. Yantasee, "Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica", J. Hazard. Mater, 182, pp. 225-231, (2010). https://doi.org/10.1016/j.jhazmat.2010.06.019
  15. Z. Hedayatnasab, F. Abnisa, W. M. A. W. Daud, "Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application", Materials & Design, 123, pp. 174-196, (2017). https://doi.org/10.1016/j.matdes.2017.03.036
  16. A. A. Kaufman, R. O. Hansen, R. L. K. Kleinberg, "Chapter 6 Paramagnetism, Diamagnetism, and Ferromagnetism", Methods in Geochemistry and Geophysics, 42, pp. 207-254, (2008).
  17. http://www.science20.com/mei/blog/blocking_temperaure
  18. D. X. Chen, E. Pardo, Y. H. Zhu, L. X. Xiang, J. Q. Ding, "Demagnetizing correction in fluxmetric measurements of magnetization curves and hysteresis loops of ferromagnetic cylinders", Journal of Magnetism and Magnetic Materials, 449, pp. 447-454, (2018). https://doi.org/10.1016/j.jmmm.2017.10.069
  19. A. Harres, M. Mikhov, V. Skumryev, A, M, H, D. Andrade, J. E. Schmidt, J. Geshev, "Criteria for saturated magnetization loop", Journal of Magnetism and Magnetic Materials, 402, pp. 76-82, (2016). https://doi.org/10.1016/j.jmmm.2015.11.046
  20. R. D. Ambashta, M. Sillanpaa, "Water purification using magnetic assistance: A review", Journal of Hazardous Materials, 180(1-3), pp. 38-49, (2010). https://doi.org/10.1016/j.jhazmat.2010.04.105
  21. C. W. Lim, I. S. Lee, "Magnetically recyclable nanocatalyst systems for the organic reactions", Nano Today, 5, pp. 412-434, (2010). https://doi.org/10.1016/j.nantod.2010.08.008
  22. S. N. Podoynitsyn, O. N. Sorokina, A. L. Kovarski, "High-Gradient magnetic separation using ferromagnetic membrane", Journal of Magnetism and magnetic Materials, 397, pp. 51-56, (2016). https://doi.org/10.1016/j.jmmm.2015.08.075
  23. K. Simeonidls, E. Kapara, T. Samaras, M. Angelakeris, N. Pliatsikas, G. Vourlias, M. Mitrakas, N. Andritsos, "Optimizing magnetic nanoparticles for drinking water technology- The case of Cr(VI)", Science of The Total Environment, 535, pp. 61-68, (2015). https://doi.org/10.1016/j.scitotenv.2015.04.033
  24. A. K. Vipin, B. Hu, B. Fugetsu, "Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water", J. Hazard. Mater, 258, pp. 93-101, (2013).
  25. J. Jang, D. S. Lee, "Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system", Bioresour. Technol, 218, pp. 294-300, (2016). https://doi.org/10.1016/j.biortech.2016.06.100
  26. B. Hui, Y. Zhang, L. Ye, "Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal", Chem. Eng. J, 235, pp. 207-214, (2014). https://doi.org/10.1016/j.cej.2013.09.045
  27. A. H. Lu, E. L. Salabas, F. Schuth, "Magnetic nanoparticles: synthesis, protection, functionalization, and application Angew", Chem. Int. Ed, 46, pp. 1222-1244, (2007). https://doi.org/10.1002/anie.200602866
  28. K. S. Hwang, C. W. Park, K. W. Lee, S. J. Park, H. M. Yang, "Highly efficient removal of radioactive cesium by sodium-copper hexacyanoferrate-modified magnetic nanoparticles", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 516, pp. 375-382, (2017). https://doi.org/10.1016/j.colsurfa.2016.12.052
  29. A. A. Moament, H. A. Ibrahim, N. Abdelmonem, I. M. Ismail, "Thermodynamic analysis for the sorptive removal of cesium and strontium ions onto synthesized magnetic nano zeolite", Microporous and Mesoporous Materials, 223, pp. 187-195, (2016). https://doi.org/10.1016/j.micromeso.2015.11.009
  30. R. R. Sheha, E. Metwally, "Equilibrium isotherm modeling of cesium adsorption onto magnetic materials", J. Hazard Mater, 143, pp. 354-357, (2007). https://doi.org/10.1016/j.jhazmat.2006.09.041
  31. H. Faghihian, M. Moayed, A. Firooz, I. Mozhgan, "Synthesis of a novel magnetic zeolite nanocomposite for removal of $Cs^+$ and $Sr_2^+$ from aqueous solution: Kinetic, equilibrium, and thermodynamic studies", J. Colloid Interface Sci, 393, pp. 445-451, (2013). https://doi.org/10.1016/j.jcis.2012.11.010
  32. R. Cortes, M. T. Olguin, M. Solache, "Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems", Desalination, 258, pp. 164-166, (2010). https://doi.org/10.1016/j.desal.2010.03.019
  33. O. A. A. Moamen, I. M. Ismail, N. Abdelmonem, R. O. A. Rahman, J. Taiwan, "Equilibrium isotherm modeling of cesium adsorption onto magnetic materials", Inst. Chem. Eng, 143, pp. 1-12, (2007)
  34. H. Yang, H. Li, J. Zhai, L. Sun, Y. Zhao, H. Yu, "Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil", Chemical Engineering Journal, 246, pp. 10-19, (2014). https://doi.org/10.1016/j.cej.2014.02.060
  35. H. Yang, L. Sun, J. Zhai, H. Li, "In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water", Journal of Materials Chemistry A, 2, 326, (2014). https://doi.org/10.1039/C3TA13548A
  36. A. Gehan, "Mathematical model to investigate the behaviour of the systems of ferromagnetic particles under the magnetic fields", Applied Mathematics and Computation, 320, pp. 654-676, (2018). https://doi.org/10.1016/j.amc.2017.09.050
  37. P. D. C. Guio, T. Proll, H. Hofbauer, "Measurement of ferromagnetic particle concentration for characterization of fluidized bed fluid-dynamics", Powder Technology, 239, pp. 147-154, (2013). https://doi.org/10.1016/j.powtec.2013.01.040
  38. Y. K. Kim, Y. Kim, S. Kim, D. Harbottle, J. W. Lee, "Solvent-assisted synthesis ofpotassium copper hexacyanoferrate embedded 3D-interconnected poroushydrogel for highly selective and rapid cesium ion removal", J. Environ. Chem. Eng, 5, pp. 975-986, (2017). https://doi.org/10.1016/j.jece.2017.01.026
  39. Y. K. Kim, T. Kim, Y. Kim, D. Harbottle, J. W. Lee, "Highly effective Cs+ removal by turbidity-free potassium copperhexacyanoferrateimmobilized magnetic hydrogels", Journal of Hazardous Materials, 340, pp. 130-139, (2017). https://doi.org/10.1016/j.jhazmat.2017.06.066
  40. H. Zhang, X. Zhao, J. Wei, F. Li, "Removal of cesium from low-level radioactive wastewaters using magnetic potassium titanium hexacyanoferrate", Chemical Engineering Journal, 275, pp. 262-270, (2015). https://doi.org/10.1016/j.cej.2015.04.052
  41. H. M. Yang, K. S. Hwang, C. W. Park, K. W. Lee, "Sodium-copper hexacyanoferrate-functionalized magnetic nanoclusters for the highly efficient magnetic removal of radioactive caesium from seawater", Water Research, 125, pp. 81-90, (2017). https://doi.org/10.1016/j.watres.2017.08.037
  42. A. Nakamura, K. Sugawara, S. Nakajima, K. Murakami, "Adsorption of Cs ions using a temperature-responsive polymer/magnetite/zeolite composite adsorbent and separation of the adsorbent from water using high-gradient magnetic separation", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 527, pp, 63-69, (2017).
  43. C. Thammawong, P. Opaprakasit, P. Tangboriboonrat, P. Sreearunothai, "Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment", J Nanopart Res, 15: 1689, (2013). https://doi.org/10.1007/s11051-013-1689-z
  44. H. M. Yang, S. C. Jang, S. B. Hong, K. W. Lee, C. Roh, Y. S. Huh, B. K. Seo, "Prussian blue-functionalized magnetic nanoclusters for the removal of radioactive cesium from water", Journal of Alloys and Compounds, 657, pp. 387-393, (2016). https://doi.org/10.1016/j.jallcom.2015.10.068
  45. A. A. Kadam, J. Jang, D. S. Lee, "Facile synthesis of pectin-stabilized magnetic graphene oxide Prussian blue nanocomposites for selective cesium removal from aqueous solution", Bioresource Technology, 216, pp. 391-398, (2016). https://doi.org/10.1016/j.biortech.2016.05.103
  46. C. Ling, S. Chang, W. Chen, W. Han, Z. Li, Z. Zhang, Y. Daia, D. Chen, "Facile one-pot synthesis of magnetic Prussian blue core/shell nanoparticles for radioactive cesium removal", RSC Advances, 98, (2016).