DOI QR코드

DOI QR Code

An analysis of the introduction and application of definite integral in textbook developed under the 2015-Revised Curriculum

2015 개정 교육과정에 따른 <수학II> 교과서의 정적분의 도입 및 활용 분석

  • Park, Jin Hee (Graduate School of Department of Mathematics Education, Seoul National University) ;
  • Park, Mi Sun (Graduate School of Department of Mathematics Education, Seoul National University) ;
  • Kwon, Oh Nam (Department of Mathematics Education, Seoul National University)
  • Received : 2018.04.17
  • Accepted : 2018.05.17
  • Published : 2018.05.31

Abstract

The students in secondary schools have been taught calculus as an important subject in mathematics. The order of chapters-the limit of a sequence followed by limit of a function, and differentiation and integration- is because the limit of a function and the limit of a sequence are required as prerequisites of differentiation and integration. Specifically, the limit of a sequence is used to define definite integral as the limit of the Riemann Sum. However, many researchers identified that students had difficulty in understanding the concept of definite integral defined as the limit of the Riemann Sum. Consequently, they suggested alternative ways to introduce definite integral. Based on these researches, the definition of definite integral in the 2015-Revised Curriculum is not a concept of the limit of the Riemann Sum, which was the definition of definite integral in the previous curriculum, but "F(b)-F(a)" for an indefinite integral F(x) of a function f(x) and real numbers a and b. This change gives rise to differences among ways of introducing definite integral and explaining the relationship between definite integral and area in each textbook. As a result of this study, we have identified that there are a variety of ways of introducing definite integral in each textbook and that ways of explaining the relationship between definite integral and area are affected by ways of introducing definite integral. We expect that this change can reduce the difficulties students face when learning the concept of definite integral.

Keywords

References

  1. 고성은, 이진호, 이승우, 차순규, 김윤희, 오택근, 조성철 (2018). 고등학교 수학 II. 서울: (주)좋은책신사고. Ko, S., Lee, J., Lee, S., Cha, S., Kim, Y., Oh, T., & Cho, S. (2018). High school mathematics II. Seoul: Sinsago.
  2. 교육과학기술부 (2011). 교육과학기술부 고시 제 2011-361호 [별책 8] 수학과 교육과정. 교육과학기술부. (Ministry of Education, Science and Technology. (2011). Mathematics curriculum. Ministry of Education Science and Technology Notice, No. 2011-361.)
  3. 교육부 (2015). 교육부 고시 제2015-74호 [별책 8] 수학과 교육과정. 교육부. Ministry of Education. (2015). Mathematics curriculum. Ministry of Education Notice, No. 2015-74.
  4. 권오남, 박재희, 조경희, 박정숙, 박지현 (2015). 학습자 중심의 미적분 교육과정과 교실 문화. 학습자중심교과교육연구 15(6), 617-642. (Kwon, O., Park, J., Cho, K., Park, J., & Park, J. (2015). Mathematics curriculum and classroom culture for student-centered calculus, The Journal of Learner-Centered Curriculum and Instruction 15(6), 617-642.)
  5. 권오남, 신준국, 전인태, 김미주, 김철호, 김태홍, 박재희, 박정숙, 박지현, 박찬호, 박효근, 오국환, 조경희, 조상현, 황성문 (2018). 고등학교 수학 II. 서울: (주)교학사. Kwon, O., Shin, J., Jun, I., Kim, M., Kim, C., Kim, T., Park, J., Park, J., Park, J., Park, C., Park, H., Oh, K., Cho, K., Cho, S., & Hwang, S. (2018). High school mathematics II. Seoul: Kyohaksa.
  6. 김남희, 나귀수, 박경미, 이경화, 정영옥 (2017). 예비교사와 현직교사를 위한 수학교육과정과 교재연구(3판). 서울: 경문사. Kim, N., Na, G., Park, K., Lee, K., & Chong, Y. (2017). A Study on the mathematics curriculum and teaching materials for prospective and in-service teachers, Seoul: Kyungmunsa.
  7. 김성옥, 정수영, 권오남 (2010). 미적분학의 기본정리의 교수학적 분석에 기반을 둔 지도방안의 탐색. 수학교육 논문집 24(4), 891-907. (Kim, S., Chung, S., & Kwon, O. (2010). An exploration of alternative way of teaching the fundamental theorem of calculus through a didactical analysis, Communications of mathematical education 24(4), 891-907.)
  8. 김원경, 조민식, 방금성, 윤종국, 신재홍, 임석훈, 김동화, 강순자, 김기탁, 박희정, 심주석, 오혜정, 이동근, 이성재, 정재훈 (2018). 고등학교 수학 II. 서울: (주)비상교육. Kim, W., Cho, M., Bang, G., Yoon, J., Shin, J., Im, S., Kim, D., Kang, S., Kim, K., Park, H., Shim, J., Oh, H., Lee, D., Lee, S., & Jung, J. (2018). High school mathematics II. Seoul: Visang.
  9. 류희찬, 선우하식, 신보미, 조정묵, 이병만, 김용식, 임미선, 한명주, 남선주, 김명수, 정성윤 (2018). 고등학교수학 II. 서울: 천재교과서. Ryu, H., Sunwoo, H., Shin, B., Cho, J., Lee, B., Kim, Y., Im, M., Han, M., Nam, S., Kim, M., & Jung, S. (2018). High school mathematics II. Seoul: Chunjae.
  10. 박교식, 이종희, 김진환, 남진영, 김남희, 임재훈, 유연주, 권석일, 김선희, 김종욱, 김경직, 윤형석, 고현주, 윤형주, 김영실, 김해성, 이경진, 조유미, 이정연, 양정은 (2018). 고등학교 수학 II. 서울: 동아출판(주). Park, k., Lee, J., Kim, J., Nam, J., Kim, N., Im, J., Yoo, Y., Kwon, S., Kim, S., Kim, J., Kim, K., Yoon, H., Ko, H., Yoon, H., Kim, Y., Kim, H., Lee, K., Cho, Y., Lee, J., & Yang, J. (2018). High school mathematics II. Seoul: Donga.
  11. 배종숙, 여태경, 조보관, 김민경, 천화정, 조성현, 변도열 (2018). 고등학교 수학 II. 서울: (주)금성출판사. Bae, J., Yeo, T., Cho, B., Kim, M., Chun, H., Cho, S., & Byun, D. (2018). High school mathematics II. Seoul: Geumsung.
  12. 신보미 (2008). 구분구적법과 정적분의 개념 분석. 한국학교수학회논문집 11(3), 421-438. (Shin, B. (2008). An analysis of the concept on mensuration by parts and definite integral. Journal of the Korean School Mathematics Society 11(3), 421-438.)
  13. 신보미 (2009). 고등학생들의 정적분 개념 이해. 학교수학 11(1), 93-110. (Shin, B. (2009). High school students' understanding of definite integral, School Mathematics 11(1), 93-110.)
  14. 윤현진, 박선화, 이근호 (2008). 교육과정에서의 성취 기준 연구. 연구보고 RRC 2008-2. 한국교육과정평가원. Yun, H., Park, S., Lee, G. (2008). A Study on the Achievement Standards in the Curriculum, research report RRC 2008-2, Seoul: Korea Institute for Curriculum and Evaluation.
  15. 이준열, 최부림, 김동재, 이정례, 전철, 장희숙, 송윤호, 송정, 김성철, 김미영 (2018). 고등학교 수학 II. 서울: (주)천재교육. Lee, J., Choi, B., Kim, D., Lee, J., Jeon, C., Chang, H., Song, Y., Song, J., Kim, S., & Kim, M. (2018). High school mathematics II. Seoul: Chunjae.
  16. 이현주, 류중현, 조완영 (2015). 통합적 이해의 관점에서 본 고등학교 학생들의 미분계수 개념 이해 분석, 수학교육논문집 29(1), 131-155. (Lee, H., Ryu, J., & Cho, W. (2015). An analysis on the understanding of high school students about the concept of a differential coefficient based on integrated understading, Communications of mathematical education 29(1), 131-155.)
  17. 전인태, 김화경, 남문희, 이환철, 이은정 (2015). 고등학교 미적분 개념 도입 국제비교 연구. 연구보고 2015_R7. 한국과학창의재단. Jun, I., Kim, W., Nam, M., Lee, H., & Lee, E. (2015). A International Comparison Study on the Concept of Calculus in High School, research report 2015_R7, Seoul: Korea Foundation for the Advancement of Science & Creativity.
  18. 정동명, 조승제 (2004). 실해석학 개론(제2판). 서울: 경문사. Jung, D. & Jo, S. (2004). Introduction to Real Analysis. Seoul: Kyungmunsa.
  19. 정연준, 이경화 (2009a). 미적분의 기본정리에 대한 고찰 - 속도 그래프 아래의 넓이와 거리의 관계를 중심으로. 수학교육학연구 19(1), 123-142. (Joung, Y. & Lee, K. (2009a). A study on the fundamental theorem of calculus : focused on the realtion between the area under time-velocity graph and distance. Journal of Educational Research in Mathematics 19(1), 123-142.)
  20. 정연준, 이경화 (2009b). 부정적분과 정적분의 관계에 관한 고찰. 학교수학 11(2), 301-316. (Joung, Y. & Lee, K. (2009b). A study on the relationship between indefinite integral and definite integral, School Mathematics 11(2), 301-316.)
  21. 최정현 (2011). 정적분 기호 이해의 특징과 교수학적 전략, 한국수학사학회지 24(3), 77-94. (Choi, J. (2011). Comprehending the symbols of definite integral and teaching strategy, The Korean Journal of HIstory of Mathematics 24(3), 77-94.)
  22. 홍성복, 이중권, 신태교, 이채형, 이병하, 신용우, 전형숙, 김형균, 권백일, 최원숙, 강인우 (2018). 고등학교 수학 II. 서울: (주)지학사. Hong, S., Lee, J., Shin, T., Lee, C., Lee, B., Shin, Y., Jeon, H., Kim, H., Kwon, B., Choi, W., & Kang, I. (2018). High school mathematics II. Seoul: Jihaksa.
  23. 황선욱, 강병개, 윤갑진, 이광연, 김수영, 이문호, 김원일, 박문환, 박상의 (2018). 고등학교 수학 II. 서울: 미래엔. Hwang, S., Kang, B., Yoon, G., Lee, K., Kim, S., Lee, M., Kim, W., Park, M., & Park, S. (2018). High school mathematics II. Seoul: Miraen.
  24. 俣野博et al (2012). 數學 II. Tokyo: Tokyo Shoseki.
  25. Bressoud, D. M. (1992). Why do we teach calculus? The American Mathematical Monthly 99(7). 615-617. https://doi.org/10.1080/00029890.1992.11995901
  26. Jones, S., Lim, Y., & Chandler, K. (2017). Teaching integration: how certain instructional moves may undermine the potential conceptual value of the Riemann sum and the Riemann integral. International Journal of Science and Mathematics Education 15(6), 1075-1095. https://doi.org/10.1007/s10763-016-9731-0
  27. Oberg, T. (2000). An investigation of undergraduate calculus student's conceptual understanding of the definite integral. Doctoral Dissertation, The University of Montana.
  28. Orton, A. (1983). Students' understanding of integration. Educational Studies in Mathematics 14(1), 1-18. https://doi.org/10.1007/BF00704699
  29. Sealey, V. (2014). A framework for characterizing student understanding of Riemann sums and definite integrals, The Journal of Mathematical Behavior 33, 230-245. https://doi.org/10.1016/j.jmathb.2013.12.002
  30. Thompson, P. W. & Silverman, J. (2008). The concept of accumulation in calculus. In M. P. Carlson & C. Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate mathematics (43-52). Washington, DC: Mathematical Association of America.