DOI QR코드

DOI QR Code

Uncertainty analysis of quantitative rainfall estimation process based on hydrological and meteorological radars

수문·기상레이더기반 정량적 강우량 추정과정에서의 불확실성 분석

  • Lee, Jae-Kyoung (Innovation Center of Engineering Education, Daejin University)
  • 이재경 (대진대학교 공학교육혁신센터)
  • Received : 2018.01.29
  • Accepted : 2018.02.14
  • Published : 2018.05.31

Abstract

Many potential sources of bias are used in several steps of the radar-rainfall estimation process because the hydrological and meteorological radars measure the rainfall amount indirectly. Previous studies on radar-rainfall uncertainties were performed to reduce the uncertainty of each step by using bias correction methods in the quantitative radar-rainfall estimation process. However, these studies do not provide comprehensive uncertainty for the entire process and the relative ratios of uncertainty between each step. Consequently, in this study, a suitable approach is proposed that can quantify the uncertainties at each step of the quantitative radar-rainfall estimation process and show the uncertainty propagation through the entire process. First, it is proposed that, in the suitable approach, the new concept can present the initial and final uncertainties, variation of the uncertainty as well as the relative ratio of uncertainty at each step. Second, the Maximum Entropy Method (MEM) and Uncertainty Delta Method (UDM) were applied to quantify the uncertainty and analyze the uncertainty propagation for the entire process. Third, for the uncertainty quantification of radar-rainfall estimation at each step, two quality control algorithms, two radar-rainfall estimation relations, and two bias correction methods as post-processing through the radar-rainfall estimation process in 18 rainfall cases in 2012. For the proposed approach, in the MEM results, the final uncertainty (from post-processing bias correction method step: ME = 3.81) was smaller than the initial uncertainty (from quality control step: ME = 4.28) and, in the UDM results, the initial uncertainty (UDM = 5.33) was greater than the final uncertainty (UDM = 4.75). However uncertainty of the radar-rainfall estimation step was greater because of the use of an unsuitable relation. Furthermore, it was also determined in this study that selecting the appropriate method for each stage would gradually reduce the uncertainty at each step. Therefore, the results indicate that this new approach can significantly quantify uncertainty in the radar-rainfall estimation process and contribute to more accurate estimates of radar rainfall.

수문 기상레이더는 강우량을 바로 추정하지 못하고 여러 단계의 정량적 강우량 추정과정을 거치게 되므로 많은 불확실성 발생요소가 존재한다. 불확실성 관련한 기존 연구들은 정량적 레이더기반 강우량 추정과정에서 보정방법을 이용하여 각 단계별 불확실성을 줄이는 연구들을 수행하였다. 하지만 기존 연구들은 전체 과정에 대한 포괄적인 불확실성을 나타내지 못하고 각 단계별 불확실성의 상대적인 비율도 제시하지 못하는 단점이 있다. 본 연구에서는 정량적 레이더강우량 추정과정의 각 단계별 불확실성을 정량화하고 불확실성 전파를 나타낼 수 있는 적합한 방법을 제시하였다. 첫 번째로 초기와 최종 불확실성, 각 단계별 불확실성의 변동과 상대적인 비율을 나타낼 수 있는 새로운 개념을 제안하였다. 두 번째로 레이더기반 추정과정의 불확실성 정량화와 전파과정을 분석하기 위해 Maximum Entropy Method (MEM)와 Uncertainty Delta Method (UMD)를 적용하였다. 세 번째로 레이더기반 강우량 추정과정의 불확실성 정량화를 위해 2개 품질관리 알고리즘, 2개 강우량 추정방법, 2개 후처리 강우량 보정방법을 2012년 여름철 18개 사례에 대하여 사용하였다. 적용결과, MEM에서 최종 불확실성(후처리 강우량 보정 불확실성: ME = 3.81)이 초기 불확실성(품질관리 불확실성: ME = 4.28)보다 작게 나타났으며, UMD에서도 최종 불확실성(UMD = 4.75)이 초기 불확실성(UMD = 5.33)보다 작게 나타나 불확실성이 감소하는 것으로 나타났다. 하지만 레이더강우량 추정단계의 불확실성은 증가하는 것으로 나타났다. 또한 레이더강우량 추정과정에서 각 단계별로 적합한 방법을 선정하는 것이 각 단계별로 불확실성이 감소시킬 수 있음을 확인하였다. 따라서 본 연구는 새로운 방법이 명확히 불확실성을 정량화할 수 있으며 정확한 정량적 레이더 강우추정에 기여할 것으로 판단한다.

Keywords

References

  1. Austin, P. M. (1987). "Relation between measured radar reflectivity and surface rainfall." Monthly Weather Review, Vol. 115, pp. 1053-1070. https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2
  2. Campos, E., and Zawadzki, I. (2000). "Instrumental uncertainties in Z-R relations." Journal of Applied Meteorology, Vol. 39, pp. 1088-1102. https://doi.org/10.1175/1520-0450(2000)039<1088:IUIZRR>2.0.CO;2
  3. Ciach, G. J., and Krajewski, W. F. (1999). "On the estimation of radar rainfall error variance." Advances in Water Resources, Vol. 22, pp. 585-595. https://doi.org/10.1016/S0309-1708(98)00043-8
  4. Ciach, G. J., Krajewski, W. F., and Villarini, G. (2007). "Product- error-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data." Journal of Hydrometeorology, Vol. 8, pp. 1325-1347. https://doi.org/10.1175/2007JHM814.1
  5. Gay, C., and Estrada, F. (2010). "Objective probabilities about future climate are a matter of opinion." Climatic Change, Vol. 99, pp. 27-46. https://doi.org/10.1007/s10584-009-9681-4
  6. Germann, U., Galli, G., Boscacci, M., and Bolliger, M. (2006). "Radar precipitation measurement in a mountainous region." Quarterly Journal of the Royal Meteorologic Society, Vol. 132, pp. 1669-1692. https://doi.org/10.1256/qj.05.190
  7. Henderson-Sellers, A. (1993). "An antipodean climate of uncertainty." Climatic Change, Vol. 25, pp. 203-224. https://doi.org/10.1007/BF01098373
  8. Huff, F. A. (1970). "Sampling errors in measurement of mean precipitation." Journal of Applied Meteorology, Vol. 9, pp. 35-44. https://doi.org/10.1175/1520-0450(1970)009<0035:SEIMOM>2.0.CO;2
  9. IPCC (2001). Climate change 2001: impacts, adaptations, and vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK and New York, NY, USA.
  10. Jaynes, E. T. (1957). "Information theory and statistical mechanics." The Physical Review, Vol. 106, pp. 620-630. https://doi.org/10.1103/PhysRev.106.620
  11. Jones, R. N. (2000). "Managing uncertainty in climate change projections - issues for impact assessment: an editorial comment." Climatic Change, Vol. 45, pp. 403-419. https://doi.org/10.1023/A:1005551626280
  12. Kim, D.-S., Kang, M.-Y., Lee, D.-I., Kim, J.-H., Choi, B.-C., and Kim, K. E. (2006). "Reflectivity Z and differencial reflectivity ZDR correction for polarimetric radar rainfall measurement." Proceedings Spring Meeting of Korean Meteorological Society, 130-131.
  13. Krajewski, W. F., and Smith, J. (2002). "Radar hydrology: rainfall estimation." Advances in Water Resources, Vol. 25, pp. 1387-1394. https://doi.org/10.1016/S0309-1708(02)00062-3
  14. Krajewski, W. F., Villarini, G., and Smith, J. A. (2010). "Radar-rainfall uncertainties." Bulletin of American Meteorological Society, Vol. 91, pp. 87-94. https://doi.org/10.1175/2009BAMS2747.1
  15. Lee, J.-K. (2015). "Uncertainty analysis of quantitative radar rainfall estimation using the maximum entropy." Atmosphere, Korean Meteorological Society, Vol. 25, pp. 511-520.
  16. Marshall, J. S., Langille, R. C., and Palmer, W. Mc K. (1947). "Measurement of rainfall by radar." Journal of Meteorology, Vol. 4, pp. 186-192. https://doi.org/10.1175/1520-0469(1947)004<0186:MORBR>2.0.CO;2
  17. McMillan, H., Jackson, B., Clark, M., Kavetski, D., and Woods, R. (2011). "Rainfall uncertainty in hydrological modeling: an evaluation of multiplicative error models." Journal of Hydrology, Vol. 400, pp. 83-94. https://doi.org/10.1016/j.jhydrol.2011.01.026
  18. Morin, E., Maddox, R. A., Goodrich, S., and Sorooshin, S. (2005). "Radar Z-R relationship for summer monsoon storm in Arizona." Weather and Forecast, Vol. 20, pp. 672-679. https://doi.org/10.1175/WAF878.1
  19. Moulin, L., Gaume, E., and Obled, C. (2009). "Uncertainties in mean areal precipitation: assessment and impact on streamflow simulations." Hydrology and Earth System Sciences, Vol. 13, pp. 99-114. https://doi.org/10.5194/hess-13-99-2009
  20. Oh, H.-M., Ha, K.-J, Kim, K.-E., and Bae, D.-H. (2003). "Precipitation rate combined with the use of optimal weighting of radar and rain gauge data." Atmosphere, Korean Meteorological Society, Vol. 13, pp. 316-317.
  21. Rosenfeld, D., Wolff, D. B., and Amitai, E. (1994). "The window probability matching method for rainfall measurements with radar." Journal of Applied Meteorology, Vol. 33, pp. 682-693. https://doi.org/10.1175/1520-0450(1994)033<0682:TWPMMF>2.0.CO;2
  22. Schneider S. H. (1983). "$CO_2$, climate change society: a brief overview." Social Science Research and Climate Change: Interdisciplinary Appraisal. [Chen, R. S., E. Boulding, and S. H. Schneider (Eds.)]. D. Reidel, Boston, MA, UAS, pp. 9-15.
  23. Shannon, C. E. (1948). "A mathematical theory of communication." Bell System Technical Journal, Vol. 27, pp. 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  24. Villarini, G., and Krajewski, W. F. (2008). "Empirically-based modeling of spatial sampling uncertainties associated with rainfall measurements by rain gauges." Advances in Water Resources, Vol. 31, pp. 1015-1023. https://doi.org/10.1016/j.advwatres.2008.04.007
  25. Villarini, G., and Krajewski, W. F. (2010). "Sensitivity studies of the models of radar-rainfall uncertainties." Journal of Applied Meteorology and Climatology, Vol. 49, pp. 288-309. https://doi.org/10.1175/2009JAMC2188.1
  26. Weather Radar Center (2013). Weather radar data analysis guidance. Weather Radar Center technical note WRC 2013-02.
  27. Wilson, J. W., and Brandes, E. A. (1979). "Radar measurement of rainfall." Bulletin of American Meteorological Society, Vol. 60, pp. 1048-1058. https://doi.org/10.1175/1520-0477(1979)060<1048:RMORS>2.0.CO;2
  28. Woodley, W., Olsen, A., Herndon, A., and Wiggert, V. (1975). "Comparison of gage and radar methods of convective rain measurement." Journal of Applied Meteorology, Vol. 14, pp. 909-928. https://doi.org/10.1175/1520-0450(1975)014<0909:COGARM>2.0.CO;2
  29. Yoo, C., Kim, J., Yoon, J., Park, C., Park, C., and Jun, C. (2011). "Use of the Kalman filter for the correction of mean-field bias of radar rainfall." Proceedings 5th Korea-Japan-China Joint Conference on Meteorology, Busan, Korea.
  30. Zhang, Y., Adams, T., and Bonta, J. V. (2007). "Subpixelscale rainfall variability and the effects on the separation of radar and gauge rainfall errors." Journal of Hydrometeorology, Vol. 8, pp. 1348-1363. https://doi.org/10.1175/2007JHM835.1
  31. Zhange, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., Cooten, S. V., Kelleher, K., Kitzmller, D., Ding, F., Seo, D.-J., and Dempsey, C. (2011). "National mosaic and multi-sensor QPE (NMW) system." Bulletin of the American Meteorological Society, Vol. 92, pp. 1321-1338. https://doi.org/10.1175/2011BAMS-D-11-00047.1