DOI QR코드

DOI QR Code

Change in Microstructure and Mechanical Properties through Thickness with Annealing of a Cu-3.0Ni-0.7Si Alloy Deformed by Differential Speed Rolling

이속압연된 Cu-3.0Ni-0.7Si 합금의 어닐링에 따른 두께방향으로의 미세조직 및 기계적 특성 변화

  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • 이성희 (국립목포대학교 신소재공학과)
  • Received : 2018.04.11
  • Accepted : 2018.04.25
  • Published : 2018.05.27

Abstract

Effects of annealing temperature on the microstructure and mechanical properties through thickness of a Cu-3.0Ni-0.7Si alloy processed by differential speed rolling are investigated in detail. The copper alloy with a thickness of 3 mm is rolled to a 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5 h at $200-900^{\circ}C$. The microstructure of the copper alloy after annealing is different in the thickness direction depending on the amount of the shear and compressive strain introduced by the rolling; the recrystallization occurs first in the upper roll side and center regions which are largely shear-deformed. The complete recrystallization occurs at an annealing temperature of $800^{\circ}C$. The grain size after the complete recrystallization is finer than that of the conventional rolling. The hardness distribution of the specimens annealed at $500-700^{\circ}C$ is not uniform in the thickness direction due to partial recrystallization. This ununiformity of hardness corresponds well to the amount of shear strain in the thickness direction. The average hardness and ultimate tensile strength has the maximum values of 250 Hv and 450 Mpa, respectively, in the specimen annealed at $400^{\circ}C$. It is considered that the complex mode of strain introduced by rolling directly affects the microstructure and the mechanical properties of the annealed specimens.

Keywords

References

  1. Q. Cui and K. Ohori, Mater. Sci. Technol., 16, 1095 (2000). https://doi.org/10.1179/026708300101507019
  2. T. Hirohata, S. Masaki, and S. Shima, J. Mater. Proc. Tech., 111, 113 (2001). https://doi.org/10.1016/S0924-0136(01)00492-7
  3. C. Y. Lim, S. Z. Han, and S. H. Lee, Met. Mater. Int. 12, 225 (2006). https://doi.org/10.1007/BF03027535
  4. K. -H. Kim and D. N. Lee, Acta Mater., 49, 2583 (2001). https://doi.org/10.1016/S1359-6454(01)00036-2
  5. T. Sakai, S. Hamada, and Y. Saito, Scr. Mater., 44, 2569 (2001). https://doi.org/10.1016/S1359-6462(01)00932-0
  6. S. H. Lee, D. J. Yoon, T. Sakai, S. H. Kim, and S. Z. Han, Korean J. Met. Mater., 47, 121 (2009).
  7. S. H. Lee, D. J. Yoon, K. Euh, S. H. Kim, and S. Z. Han, Korean J. Met. Mater., 48, 77 (2010). https://doi.org/10.3365/KJMM.2010.48.01.077
  8. S. H. Lee, J. Y. Lim, H. Utsunomiya, K. Euh, and S. Z. Han, Korean J. Met. Mater., 48, 942 (2010). https://doi.org/10.3365/KJMM.2010.48.10.942
  9. S. H. Lee, J. Y. Lim, D. J. Yoon, K. Euh, and S. Z. Han, Korean J. Mater. Res., 21, 15 (2011). https://doi.org/10.3740/MRSK.2011.21.1.015
  10. S. H. Lee, Korean J. Mater. Res., 22, 581 (2012). https://doi.org/10.3740/MRSK.2012.22.11.581
  11. S. H. Lee, S. R. Lee, and H. Utsunomiya, Korean J. Mater. Res., 52, 637 (2013).
  12. S. H. Lee and S. Z. Han, Korean J. Mater. Res., 26, 8 (2016). https://doi.org/10.3740/MRSK.2016.26.1.8
  13. S. H. Lee and S. Z. Han, Korean J. Mater. Res., 28, 113 (2018). https://doi.org/10.3740/MRSK.2018.28.2.113