DOI QR코드

DOI QR Code

Comparison of the Dehumidification Performance Between LiCl and LiBr in a Liquid Desiccant Dehumidifying Element Having Criss-Cross Sinusoidal Channels (Celdek)

교차 적층된 파형 액체 제습 소자 (Celdek)에서 LiCl과 LiBr 수용액의 제습 성능 비교

  • Kim, Nea-Hyun (Department of Mechanical Engineering, Incheon National University)
  • 김내현 (인천대학교 기계시스템공학부)
  • Received : 2018.02.19
  • Accepted : 2018.05.04
  • Published : 2018.05.31

Abstract

Recently, liquid desiccant systems have received attention for the dehumidification of air. LiCl and LiBr are widely used in liquid desiccant systems due to their excellent thermo-physical properties. In this study, dehumidification tests were conducted with Celdek elements using LiCl and LiBr. During the tests, the dry and wet-bulb air temperatures were maintained at $35^{\circ}C$ and $28^{\circ}C$, respectively. The solution temperature was $20^{\circ}C$, the solution concentration was 50%, the solution circulation rate was 50 kg/h, and the frontal air velocity was varied from 2.0 to 4.0 m/s. The results show that the amount of dehumidification increased as the frontal velocity increased. On average, LiCl showed 27% higher dehumidification performance than LiBr, which was probably due to the lower saturation of the absolute humidity of LiCl compared with that of LiBr. On the other hand, LiBr yielded 12% larger pressure drop than LiCl. In general, the Sherwood numbers of LiCl and LiBr were approximately the same, showing that the effect of the desiccant on the Sherwood number was insignificant. Existing correlations highly overpredicted the present Sherwood numbers.

최근 들어 공기의 제습에 액체 제습제를 사용하는 방법이 각광을 받고 있다. LiCl과 LiBr은 우수한 열물성으로 인하여 액체 제습 시스템에 널리 사용되고 있다. 본 연구에서는 LiCl과 LiBr 수용액을 사용하여 상용 Celdek 소자의 제습 성능을 실험하였다. 실험은 입구 건습구 온도를 $35^{\circ}C/28^{\circ}C$로 유지하고 전방 풍속을 2.0 m/s에서 4.0 m/s로 변화시키며 수행되었다. 수용액의 입구 온도와 농도는 $20^{\circ}C$, 50%, 수용액의 순환량은 50 kg/h로 유지하였다. 실험 결과 제습량은 풍속이 증가할수록 증가하였다. 또한 LiCl의 제습 성능은 LiBr보다 평균 27% 크게 나타났다. 이는 LiCl의 포화 절대 습도가 LiBr의 포화 절대습도보다 작기 때문이다. 반면 LiBr의 압력 손실은 LiCl보다 평균 12% 크게 나타났다. 한편 LiCl 과 LiBr의 Sherwood 수는 비교적 잘 일치하였다. 이로부터 제습제가 Sherwood 수에 미치는 영향은 미미함을 알 수 있다. 기존 상관식들은 본 실험의 Sherwood 수를 현저히 높게 예측하였다.

Keywords

References

  1. H.-X. Fu, X.-H. Liu, "Review of the Impact of Liquid Desiccant Dehumidification on Indoor Air Quality, Building and Environment," vol. 116, pp. 158-172, 2017. DOI: https://doi.org/10.1016/j.buildenv.2017.02.014
  2. A. H. Abdel-Salm, C. J. Simonson, "State-of-the-Art in Liquid Desiccant Air Conditioning Equipment and Systems," Renewable and Sustainable Energy Reviews, vol. 58, pp. 1152-1183, 2016. DOI: https://doi.org/10.1016/j.rser.2015.12.042
  3. H. M. Factor, G. Grossman, "A Packed Bed Dehumidifier/Regenerator for Solar Air Conditioning with Liquid Desiccants," Solar Energy, vol. 24, pp. 541-550, 1980. DOI: https://doi.org/10.1016/0038-092X(80)90353-9
  4. Y. Yin, X. Zhang, "A New Model for Determining Coupled Heat and Mass Transfer Coefficients Between Air and Liquid Desiccant," Int .J. Heat Mass Trans., vol. 51, pp. 3287-3297, 2008. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.040
  5. D. I. Stevens, J. E. Braun, J. E., S. A. Klein, "An Effectiveness Model of Liquid-Desiccant System Heat/Mass Exchangers," Solar Energy, vol. 42, no. 6, pp. 449-455, 1989. DOI: https://doi.org/10.1016/0038-092X(89)90045-5
  6. R. Chengqin, J. Yi, Z. Yianpin, "Simplified Analysis of Coupled Heat and Mass Transfer Processes in Packed Bed Liquid Desiccant-Air Contact System," Solar Energy, vol. 80, pp. 121-131, 2006. DOI: https://doi.org/10.1016/j.solener.2005.01.007
  7. M. S. Park, J. R. Howell, G. C. Vilet, J. Peterson, "Numerical ad Experimental Results for Coupled Heat and Mass Transfer Between a Desiccant Film and Air in Cross-Flow," Int. J. Heat Mass Trans., vol. 37, Suppl. 1, pp. 395-402, 1994. DOI: https://doi.org/10.1016/0017-9310(94)90039-6
  8. Y. J. Dai, H. F. Zhang, "Numerical Simulation and Theoretical Analysis of Heat and Mass Transfer in a Cross Flow Liquid Desiccant Air Dehumidifier Packed with Honeycomb Paper," Energy Conv. Manage., vol. 45, pp. 1343-1356, 2004. DOI: https://doi.org/10.1016/j.enconman.2003.09.006
  9. P. Gandhidasan, C. F. Kettleborough , M. Rifat Ullah, "Calculation of Heat and Mass Transfer Coefficients in a Packed Tower Operating with a Desiccant-Air Contact System," J. Solar Energy Eng., vol. 108, pp. 123-128, 1986. DOI: https://doi.org/10.1115/1.3268078
  10. A. Ertas, E. E. Anderson, S. Kavasogullari, "Comparison of Mass and Heat Transfer Coefficients of Liquid-Desiccant Mixtures in a Packed Column," J. Energy Resources Tech., vol. 113, pp. 1-6, 1991. DOI: https://doi.org/10.1115/1.2905774
  11. N. Fumo, D. Y. Goswami, "Study of an Aqueous Lithium Chloride System: Air Dehumidification and Desiccant Regeneration," Solar Energy, vol. 72, no. 4, pp. 351-361, . DOI: https://doi.org/10.1016/S0038-092X(02)00013-0
  12. G. A. Longo, A. Gasparella, "Experimental and Theoretical Analysis of Heat and Mass Transfer in a Packed Column Dehumidifier/Regenerator with Liquid Desiccant," Int. J. Heat Mass Trans., vol. 48, pp. 5240-5254, 2005. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.011
  13. V. Oberg, D. Y. Goswami, "Experimental Study of the Heat and Mass Transfer in a Packed Bed Liquid Desiccant Air Dehumidifier," J. Solar Energy Eng., vol. 120, pp. 289-297, 1998. DOI: https://doi.org/10.1115/1.2888133
  14. T.-W. Chung, T. K. Ghosh, A. L. Hines, "Comparison Between Random and Structured Packings for Dehumidification of Air by Lithium Chloride Solutions in a Packed Column and Their Heat and Mass Transfer Correlations," Ind. Eng. Chem. Res., vol. 35, pp. 192-198, 1996. DOI: https://doi.org/10.1021/ie940652u
  15. S. V. Potnis, T. G. Lenz, "Dimensionless Mass Transfer Correlations for Packed-Bed Liquid Desiccant Contactors," Ind. Eng. Chem. Res., vol. 35, pp. 4185-4193, 1996. DOI: https://doi.org/10.1021/ie960212y
  16. http://www.munters.com/
  17. E. Elsarrag, E. E. M. Magzoub, S. Jain, "Mass Transfer Correlations for Dehumidification of Air by Triethylene Glycol in a Structured Packed Column," Ind. Eng. Chem. Res., vol. 43, pp. 7676-7681, 2004. DOI: https://doi.org/10.1021/ie049802j
  18. X. H. Liu, Y., Zhang, K. Y. Qu, Y. Jiang, "Experimental Study on Mass Transfer Performances of Cross Flow Dehumidifier Using Liquid Desiccant," Energy Conv. Manage., vol. 47, pp. 2682-2692, 2006. DOI: https://doi.org/10.1016/j.enconman.2005.10.035
  19. X. H. Liu, K. Y. Qu, Y. Jiang, "Empirical Correlations to Predict the Performance of the Dehumidifier Using Liquid Desiccant in Heat and Mass Transfer," Renewable Energy, vol. 31, pp. 1627-1639, 2006. DOI: https://doi.org/10.1016/j.renene.2005.08.029
  20. W. Z. Gao, J. H. Liu, Y. P. Cheng, X. L. Zhang, "Experimental Investigation on the Heat and Mass Transfer Between Air and Liquid Desiccant in a Cross-Flow Dehumidifier," Renewable Energy, vol. 37, pp. 117-123, 2012. DOI: https://doi.org/10.1016/j.renene.2011.06.006
  21. C. Dong, R. Qi, L. Lu, Y. Wang, L. Wang, "Comparative Performance Study on Liquid Desiccant Dehumidification with Different Packing Types for Built Environment," Sci. Tech. Built Env., vol. 23, pp. 116-126, 2017. DOI: https://doi.org/10.1080/23744731.2016.1215691
  22. T. Chen, Z. Dai, Y. Yin, X. Zhang, "Experimental Investigation on the Mass Transfer Performance of a Novel Packing Used for Liquid Desiccant Systems," Sci. Tech. Built Env., vol. 23, pp. 46-59, 2017. DOI: https://doi.org/10.1080/23744731.2016.1206794
  23. ASHRAE Standard 41.2, Standard Method for Laboratory Air-Flow Measurement, ASHRAE, 1986.
  24. ASHRAE Standard 41.1, Standard Method for Temperature Measurement, ASHRAE, 1986.
  25. Kim, N.-H., Personal communication with Hundred Group, China, 2017.
  26. M. R. Conde, "Properties of Aqueous Solutions of Lithium and Calcium Chlorides: Formulations for Use in Air Conditioning Equipment Design," Int. J. Thermal Sci., vol. 43, pp. 367-382, 2004. DOI: https://doi.org/10.1016/j.ijthermalsci.2003.09.003
  27. A. Matsuda, T. Munakawa, T. Yoshimaru, T. Kubara, H. Fuchi, "Measurement of Vapor Pressure of LiBr Water Solutions," Kagaku Koguku Ronbunshu, The Society of Chemical Engineers, vol. 6, no. 2, pp. 119-122, 1980. DOI: https://doi.org/10.1252/kakoronbunshu.6.119
  28. Z. Yuan, K. E. Herold, "Specific Heat Measurements on Aqueous Lithium Bromide," HVAC&R Research, vol. 11, no. 3, pp. 361-375, 2005. DOI: https://doi.org/10.1080/10789669.2005.10391143
  29. A. F. Mills, Basic Heat and Mass Transfer, Irwin Pub., 1995.
  30. S. J.. Kline, F. A. McClintock, "The Description of Uncertainties in Single Sample Experiments," Mechanical Engineering, vol. 75, pp. 3-9, 1953.
  31. A. Muley, R. M. Manglik, "Experimental Study of Turbulent Heat Transfer and Pressure Drop in a Plate Heat Exchanger with Chevron Plates," J. Heat Transfer, vol. 121, pp. 110-117, 1999. DOI: https://doi.org/10.1115/1.2825923
  32. H. Martin, "A Theoretical Approach to Predict the Performance of Chevron-Type Plate Heat Exchangers," Chem. Eng. Proc., vol. 35, pp. 301-310, 1996. DOI: https://doi.org/10.1016/0255-2701(96)80021-3
  33. D. Dovic, B. Palm, S. Savic, "Generalized Correlations for Predicting Heat Transfer and Pressure Drop in Plate Heat Exchanger Channels of Arbitrary Geometry," Int. J. Heat Mass Trans., vol. 52, pp. 4553-4563, 2009. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.074