DOI QR코드

DOI QR Code

A study of Expression of TGF-β1, c-Myc, Erb-B2 and Thymosin-β4 Gene in Alcoholic Liver Damage Tissue.

알코올성 간 손상 조직에서 TGF-β1와 c-Myc, Erb-B2, Thymosin-β4 유전자 발현 융합 연구

  • Kim, Jean-Soo (Department of Clinical Laboratory Science, Daejeon Health Institute of Technology) ;
  • Choi, Sang-Ki (Department of Biology, Sunchon National University)
  • 김진수 (대전보건대학교 임상병리과) ;
  • 최상기 (국립순천대학교 생물학과)
  • Received : 2018.03.13
  • Accepted : 2018.05.20
  • Published : 2018.05.28

Abstract

This study has been conducted to see the expression of $TGF-{\beta}_1$, c-Myc, Erb-B2 and $Thymosin-{\beta}_4$ genes in ethanol - damaged liver tissues. Experimental groups were divided into 2 groups, one where damaged liver was caused by 25% ethanol and normal group administered with purified water. Results of test showed the expression of $TGF-{\beta}_1$, c-Myc, and $Thymosin-{\beta}_4$ genes was higher in the experimental group treated with 25% ethanol than in the normal group. Erb-B2 gene was not expressed clearly. Thus, it is considered that we can expect to utilize $TGF-{\beta}_1$, c-Myc 및 $Thymosin-{\beta}_4$ as auxiliary data and find clinical meanings of diagnosis on hepatic diseases, In addition to serologic and histological examination by convergence examining the gene expression status by molecular diagnostic techniques in liver-related disease prevention and diagnosis through results of this study.

본 연구는 25% 에탄올에 손상된 간조직에서 $TGF-{\beta}_1$와 c-Myc, Erb-B2, $Thymosin-{\beta}_4$ 유전자의 발현을 알아 보고자 실시 하였다. 실험군은 2군으로 나누어 25% 에탄올로 간 손상을 유발한 실험군과 정제수를 투여한 대조군으로 나누어 실험하였다. 검사 결과는 25% 에탄올를 투여 했던 실험군은 대조군에 비하여 $TGF-{\beta}_1$, c-Myc 및 $Thymosin-{\beta}_4$ 유전자의 발현 증가를 알 수 있었으며 Erb-B2 유전자는 뚜렷한 발현을 알 수 없었다. 또한 손상된 간 조직에서 헤마톡실린 에오진 염색을 통한 세포 손상을 관찰 할 수 있었다. 결론적으로 기존 임상에서 간 기능 관련 질병 예방과 질환 판정 시 혈청학적, 조직학적 검사 외에 $TGF-{\beta}_1$, c-Myc 및 $Thymosin-{\beta}_4$의 분자 진단 기법에 의한 유전자 발현 상태를 융합 검사함으로써 간 질환 판정의 보조 자료로 활용 될 수 있을 것으로 사료 된다.

Keywords

References

  1. V. A. Ramchandani, W. F. Bosron, T. K. Li. (2001). Research advances in ethanol metabolism. Pathol. Biol, 49, 676-682. https://doi.org/10.1016/S0369-8114(01)00232-2
  2. H. Rouach, M. Clement, M. T. Ofanelli, B. Janvier, J. Nordmann, R. Nordmann. (1983). Hepatic lipid peroxidation and mitochondrial susceptibility to peroxidative attacks during ethanol inhalation and withdrawal. Biochem. Biophys, Acta, 753, 439-444. https://doi.org/10.1016/0005-2760(83)90068-1
  3. C. S. Lieber. (1994). Alcohol and liver :update. Gastroenterology, 106, 1085-1090. https://doi.org/10.1016/0016-5085(94)90772-2
  4. S. Zakhari. (2006). Overview: how is alcohol metabolized by the body? Alcohol Res & Health, 29, 245-254.
  5. C. S. Lieber. (1970). New pathway of ethanol metabolism in the liver. Gastroenterology, 59, 930-937.
  6. H. L. Bleich, E. S. Boro. (1977). Metabolic and hepatic effects of alcohol. N Engl J Med, 296, 612-616. https://doi.org/10.1056/NEJM197703172961106
  7. A. Gramenzi, F. Caputo, M. Biselli, F. Kuria, E. Loggi, P. Andreone, M. Bernardi. (2006). Review article: alcoholic liver disease-pathophysiological aspects and risk factors. Aliment Pharmacol Ther, 24, 1151-1161. https://doi.org/10.1111/j.1365-2036.2006.03110.x
  8. S. K. Das, D. M. Vasudevan. (2007). Alcohol-induced oxidative stress. Life Sci, 81, 177-187. https://doi.org/10.1016/j.lfs.2007.05.005
  9. K. Nagata, H. Suzuki, S. Sakaguchi. (2007). Common pathogenic mechanism in development progression of liver injury caused by non-alcoholic or alcoholic steatohepatitis. J Toxicol Sci, 32, 453-468. https://doi.org/10.2131/jts.32.453
  10. C. S. Lieber. (2004). Milestones in liver disease. J Hepatol, 40, 198-202. https://doi.org/10.1016/j.jhep.2003.12.005
  11. T. Byers, G. Perry. (1992). Dietary carotenes, vitamin C, and vitamin E as protective antioxidants in human cancers. Ann Rev Nutr, 12, 135-159.
  12. R. A. Lawrence, R. F. Burk. (1976). Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun, 71, 952- 958. https://doi.org/10.1016/0006-291X(76)90747-6
  13. T. L. Low, A. L. Goldstein. (1982). Chemical characterization of thymosin beta-4. J. Biol. Chem, 257, 1000-1006.
  14. M. J. Kim, (2017). A study on Expression of Thymosin ${\beta}_4$ in Cervical Cancer induced Human Papilloma Virus, konyang university Graduate school. 7-8.
  15. K. C. Hong, (2015). Overexpression and characterization of thymosin beta-4 in Escherichia coli, Dongwee univrsity Graduate school, 10-11.
  16. K. O. Hong, (2016). Thymosin b4 induces proliferation, invasion, and epithelial-to-mesenchymal transition of oral squamous cell carcinoma, seoul univrsity Graduate school, 1-2.
  17. S. H. Yoon. (2008.). Expression of Thymosin-${\beta}4$ in odontoblast differentiation of the mouse. Josun Univ. Graduate school.
  18. D. Safer, M. Elzinga, V. T. Nachmias. (1991). Thymosin beta4 and Fx, an actin-sequestering peptide, are indistinguishable. J. Biol. Chem, 266, 4029-4032.
  19. D. Safer, R. Golla, V. T. Nachmias. (1990). Isolation of a 5-kilodalton actin-sequestering peptide from human blood platelets. Proc. Natl. Acad. Sci. USA, 87, 2536-2540. https://doi.org/10.1073/pnas.87.7.2536
  20. D. Pantaloni, M. F. Carlier. (1993). How profiling promotes actin filament assembly in the presence of thymosin b4. Cell, 75, 1007-1014. https://doi.org/10.1016/0092-8674(93)90544-Z
  21. F. Kang, D. L. Purich, F. S. Southwick. (1999). Profilin promotes barbed- end actin filament assembly without lowering the critical concentration. J Biol Chem, 274, 36963-36972. https://doi.org/10.1074/jbc.274.52.36963
  22. D. S. Grant, J. L. Kinsella, M. C. Kibbey, S. LaFlamme, P. D. Burbelo, A. L. Goldstein, H. K. andKleinman. (1995). Matrigelinducesthymosin beta4 gene in differentiating endothelial cells. J Cell Sci, 108, 3685-3694.
  23. D. S. Grant, W. Rose, C. Yaen, A. Goldstein, J. Martinez, H. Kleinman. (1999). Thymosin-${\beta}4$ enhances endothelial cell differentiation and angio genesis. Angio genesis, 3, 125-135.
  24. T. Huff, C. S. Muller, A. M. Otto, R. Netzker, E. Hannappel. (2001). beta-Thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol, 33, 205-209. https://doi.org/10.1016/S1357-2725(00)00087-X
  25. J. Gomez-Marquez, J. I. Pedrares, A. Otero, R. Anadon. (1993). Prominent expression of the actin-sequestering peptide Fx gene in the hippo campal region of ratbrain. Neuroscience Letters, 152, 41-44. https://doi.org/10.1016/0304-3940(93)90478-4
  26. J. Gomez-Marquez, F. F. delAmo, P. Carpintero, R. Anadon. (1996). High levels of mouse thymosin b4 mRNA in differentiating P19 embryonic cells and during development of cardiovascular tissues. Biochim BiophysActa, 1306, 187-193.
  27. R. Anadon, I. R. Moldes, P. Carpintero, G. Evangelatos, E. Livianou, L. Leondiadis, I. Quintela, M. C. Cervino, J. Gomez-Marquez. (2001). Differential expression of thymosin b4 and b10 during rat cerebellum postnatal development. Brain Res, 894, 255-265. https://doi.org/10.1016/S0006-8993(01)02024-8
  28. D. Philp, A. L. Goldstein, H. K. Kleinman. (2004). Thymosin ${\beta}4$ promotes angiogenesis, wound healing, and hair follicle development. Mech Ageing Dev, 125, 113-115. https://doi.org/10.1016/j.mad.2003.11.005
  29. W. S. Wang, P. M. Chen, H. L. Hsiao, S. Y. Ju, Y. Su. (2003). Over expression of the thymosin beta-4 gene is associated with malignant progression of SW480 colon cancer cells. Oncogene, 22, 3297-3306. https://doi.org/10.1038/sj.onc.1206404
  30. K. M. Malinda, A. L. Goldstein, H. K. Kleinmman. (1997). Thymosin beta 4 stimulates directional migration of human umbilical vein endothelial cells. FASEG J, 11, 474-481. https://doi.org/10.1096/fasebj.11.6.9194528
  31. E. A. Clark, T. R. Golub, E. S. Lander, R. O. Hynes. (2000). Genomics analysis of metastasis reveals an essectial role for RhoC. Nature, 406, 532-535. https://doi.org/10.1038/35020106
  32. T. Kobayashi, F. Okada, N. Fujii, N. Tomita, S. Ito, H. Tazawa. (2002). Thymosin-beta 4 regulates motility and metastasis of malignant mouse fibrosarcoma cells. Am J Pathol, 160, 869-82. https://doi.org/10.1016/S0002-9440(10)64910-3
  33. K. H. Kim, K. J. Jo, Y. Go. (2011). Understanding and technique of genetics, Korea medical book, 203-205.
  34. M. Matsuoka, H. Tsukamoto. (1990). stimulation of hepatic lipocytie collagen pruduction by Kupffer cell-derived transforming growth factor B: implication for a pathogentic role in liver fibrogenesis. Hepatology, 11, 599-605. https://doi.org/10.1002/hep.1840110412
  35. H. Nakatsukase, R. P. Evarts, C. C. Hsia, S, S. Thorgeirsson. (1990). Transfoming growth factor-B1 and type I procollagen transscripts during regeneration and early fibrosis of rat liver. Lab Invest, 63, 171-180.
  36. D. A. Brenner. (1991). Transforming growth factor B and hepatic fibrosis: cause of effect?, Hepatology, 14, 740-742.
  37. A. Castilla, J. Prieto, N. Fausto. (1991). Transforming growth factor B1 and a in chronic liver disease. N Engl J Med, 324, 933-940. https://doi.org/10.1056/NEJM199104043241401
  38. Z. Qi, N. Atsuchi, A. Ooshima, A. Takeshita, H. Ueno. (1999). Blockade of type B transforming growth factor sigaling prevents liver fibrosis and dysfunction in the rat, Proc Natl Acad Sci, 96, 2345-2349. https://doi.org/10.1073/pnas.96.5.2345
  39. Y. S. Choi, (2017), The Regulatory Role of Dickkopf-1 as a Target of Oncogenic Transforming Growth Factor-${\beta}1$-Smad3 Pathway in Human Lung Cancer Cells, gangwon univrsity Graduate school, 1-2.
  40. J. H. Park, (2016), The association of single nucleotide polymorphisms in the TGF-${\beta}1$ and RAGE genes with polycystic ovary syndrome, Cha university General Graduate Shool, 2-3.
  41. J. H. Lee , C. G, Yoon, S. I. Lee. (1993). Effects of dietary protein on the changes of lipoprotein fractions in carbon tetrachloride-treated rats. J Korean Soc Food Sci Nutr, 22, 127-131.
  42. J. L. Kenneth, D. S. Thomas. (2001). Analysis of relative gene expression data using real-time Quantitative PCR and the 2-DDCT method. Methods, 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  43. Y. H. You, K. Y. Jung, Y. H. Lee, W. J. Jun, B. Y. Lee. (2009). Hepatoprotective effects of hovenia dulcis fruit on ethanol-induced liver damage in vitro and in vivo. J Korean Soc Food Sci Nutr, 38, 154-159. https://doi.org/10.3746/jkfn.2009.38.2.154
  44. Y. T. Ahn, J. S. Bae, Y. H. Kim, K. S. Lim, C. S. Huh. (2005). Effects of fermented milk intake on hepatic antioxidative systems in alcohol treated rats. Korean J Food Sci Technol, 37, 631-635.
  45. P. Sher, (1997). Diagnostic effectiveness of biochemical liver-function tests, as evaluated by discriminant function analysis. Clin Chem, 23, 627- 630.