References
- M, Maciejewsk & J. Bischoff, (2016). Congestion effects of autonomous taxi fleets, Transport, 1-10.
- J. Bischoff & M., Maciejewski, (2016), Simulation of city-wide replacement of private cars with autonomous taxis in Berlin, Procedia Computer Science, 83, 237- 244. https://doi.org/10.1016/j.procs.2016.04.121
- D. Freitas, L. Meyer, O. Schuemperlin, & M. Balac, (2016), Road pricing: An analysis of equity effects with MATSim, Conference paper STRC.
- D. J. Fagnant & K. M., Kockelman, (2014). The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios, Transportation Research Part C, 40. 1-13. https://doi.org/10.1016/j.trc.2013.12.001
- D. J Fagnant, K. M., Kockelman & P. Bansal, (2015), Operations of a shared autonomous vehicle fleet for austin, texas, market. Transportation Research Record: Journal of the Transportation Research Board,. 2536. 98-106. https://doi.org/10.3141/2536-12
- H. Sebastian, A. Erath, K. W. Axhausen (2017). Simulation of autonomous taxis in a multi-modal trac scenario with dynamic demand, TRB annual meeting.
- A. Horni, K. Nagel & K. W. Axhausen (2015), The Multi-Agent Transport Simulation MATSim, Ubiquity Press, London.
- A. Horni & K. W. Axhausen (2014). Gridlock Modeling with MATSim, 14th Swiss Transport Research Conference.
- Y. H Kim & S. C Kan. (2011), Innovative Traffic Demand Management Strategy : Expressway Reservation System, Transportation Research Record, 3245, 27-35.
- L. Patryk. (2015). Multi-Agent Traffic Assignment of a Synthetic Stockholm Population, Royal Institute of Technology (KTH) Stockholm, Sweden, Master Thesis.
- L. Martinez & P. Crist. (2015). Urban Mobility System Upgrade-How shared self-driving cars could change city traffic, International Transport Forum. OECD.
- L. A. Merlin. (2017). Comparing Automated Shared Taxis and Conventional Bus Transit for a Small City. Journal of Public Transportation, 20. 2, 19-39. https://doi.org/10.5038/2375-0901.20.2.2
- N., Andreas, I. Kaddoura & K. Nagel (2016). Mind the Gap-Passenger Arrival Patterns in Multi-agent Simulations, International Journal of Transportation .4, 1, 27-40. http://dx.doi.org/10.14257/ijt.2016.4.1.02
- K. Spieser, et al. (2017). Toward a systematic approach to the design and evaluation of automated mobility-on-demand systems: A case study in Singapore. MIT Open Access Articles.
- X., Yuliang, D. Qingyun, H. Biao, R. Fu, Y. Zhang & Y. Xinyue. (2017). The Dynamic Optimization of the Departure Times of Metro Users during Rush Hour in an Agent-Based Simulation: A Case Study in Shenzhen, China, Appl. Sci. 7, 1102; doi:10.3390/app7111102
- S. Zhu, & A. L. Kornhauser. (2017). The Interplay Between Fleet Size, Level-of-Service and Empty Vehicle Repositioning Strategies in Large-Scale, Shared-Ride Autonomous Taxi Mobility-on-Demand Scenarios, Transportation Research Board 96th Annual Meeting, 17-059.
- H. M. Abdul Aziz, B. H. Park, A. Morton, N. Robert, M. Stewart, Hilliard & M. Maness, (2018). A high resolution agent-based model to support walk-bicycle infrastructure investment decisions: A case study with New York City, Transportation Research Part C 86, 280-299. https://doi.org/10.1016/j.trc.2017.11.008
- S. Y Oh. (2015). The Implementation of an Advanced Taxi Movement Model in the ONE Simulator, Journal of Digital Convergence 13, 237-241.
- S. K Park. (2018). A Study of the Autonomous Vehicle Technology and its Future Trend : Focusing on Current Industry and Technology Convergence of Trend, Journal of the Korea Convergence Society, 9, 253-259.