References
- A. J. Al-Shareef, E. A. Mohamed & E. Al-Judaibi. (2008). Next 24-hours Load Forecasting Using Artificial Neural Network for the Western Area of Saudi Arabia, JKAU: Eng. Sci., 19(2), 25-40. https://doi.org/10.4197/Eng.19-2.2
- B. H. Wang. (2009). Short-term Electrical Load Forecasting Using Neuro-fuzzy Model with Error Compensation, International Journal of Fuzzy Logic and Intelligent Systems, 9(4), 249-342. https://doi.org/10.5391/IJFIS.2009.9.4.249
- C. Ying, P. B. Luh, G. Che, Z. Yige, L. D. Michel, M. A. Coolbeth, P. B. Friedland & S. J Rourke. (2010). Short-term Load Forecasting: Similar Day-based Wavelet Neural Networks, IEEE Trans. on Power Systems, 25(1), 322-330. https://doi.org/10.1109/TPWRS.2009.2030426
- L. M. Saini. (2008). Peak Load Forecasting Using Bayesian Regularization, Resilient and Adaptive Backpropagation Learning Based Artificial Neural Networks, Electric Power Systems Research 78, 1302-1310. https://doi.org/10.1016/j.epsr.2007.11.003
- K. K. Seo. (2015). Sales Prediction of Electronic Appliances Using A Convergence Model Based on Artificial Neural Network and Genetic, Journal of digital Convergence, 13(9), 177-182. https://doi.org/10.14400/JDC.2015.13.9.177
- R. R. Agnaldo & P. A. Alexandre. (2005). Feature Extraction via Multi-resolution Analysis for Short-term Load Forecasting, IEEE Trans. Power Systems, 20(1), 189-198. https://doi.org/10.1109/TPWRS.2004.840380
- S. Fan & L. Chen. (2006). Short-term Load Forecasting Based on An Adaptive Hybrid Method, IEEE Trans. Power Systems, 23(1), pp. 392-401.
- T. Senjyu, P. Mandal, K. Uezato & T. Funabashi. (2004). Next Day Load Curve Forecasting Using Recurrent Neural Network Structure, IEE Proc.- Gener. Transm. and Distrib., 151(3), 388-394. https://doi.org/10.1049/ip-gtd:20040356
- Z. Yun, Z. Quan, S. Caixin, L. Shaolan, L. Yuming & S. Yang. (2008). RBF Neural Network and ANFIS-based Short-term Load Forecasting Approach in Real-Time Price Environment, IEEE Trans. on Power Systems, 23(3), 853-858. https://doi.org/10.1109/TPWRS.2008.922249
- T. Ouyang, Y. He, H. Li, Z. Sun & S. Baek. A Deep Learning Framework for Short-term Power Load Forecasting, https://arxiv.org/pdf/1711.11519.
- T. Hossen, S. J. Plathottam & R. K. Angamuthu. (2017). Short-term Load Forecasting Using Deep Neural Networks (DNN), Power Symposium (NAPS), North American, 17-19.
- K. Amarasinghe, D. L. Marino & M. Manic. (2017). Deep Neural Networks for Energy Load Forecasting, Industrial Electronics (ISIE), 2017 IEEE 26th International Symposium, 19-21.
- Wan He. (2017). Load Forecasting via Deep Neural Networks, Procedia Computer Science, 122, 308-314. https://doi.org/10.1016/j.procs.2017.11.374
- M. F. Moller. (1993). A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning, Neural Networks, 6, 525-533. https://doi.org/10.1016/S0893-6080(05)80056-5
- H. S. Hwang. (2013). Daily Electric Load Forecasting Based on RBF Neural Network Models, International Journal of Fuzzy Logic and Intelligent Systems, 13(1), 39-49. https://doi.org/10.5391/IJFIS.2013.13.1.39
- J. H. Lim, S. Y. Kim, J. D. Park & K. B. Song. (2013). Representative Temperature Assessment for Improvement of Short-Term Load Forecasting Accuracy, Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 27(6), 39-43. https://doi.org/10.5207/JIEIE.2013.27.6.039
- O. S. Kwon & K. B. Song. (2011). Development of Short-Term Load Forecasting Method by Analysis of Load Characteristics During Chuseok Holiday, The transactions of The Korean Institute of Electrical Engineers 60(12), 2215-2220. https://doi.org/10.5370/KIEE.2011.60.12.2215
- S. Y. Kim, J. H. Lim, J. D. Park & K. B. Song. (2013). Short-Term Electric Load Forecasting for the Consecutive Holidays Using the Power Demand Variation Rate, Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 27(6), 17-22. https://doi.org/10.5207/JIEIE.2013.27.6.017
- P. Zhang, X. Wu, X. Wang & S. Bi. (2015). Short-Term Load Forecasting Based on Big Data Technologies, CSEE Journal of Power And Energy Systems, 1(3). 59-67. https://doi.org/10.17775/CSEEJPES.2015.00036
- H. Zhao, Z. Tang, W. Shi & Z. Wang. (2017). Study of Short-term Load Forecasting In Big Data Environment, Control And Decision Conference, 28-30. DOI: 10.1109/CCDC.2017.7978378.