DOI QR코드

DOI QR Code

Deep Neural Network Model For Short-term Electric Peak Load Forecasting

단기 전력 부하 첨두치 예측을 위한 심층 신경회로망 모델

  • Hwang, Heesoo (Department of Electrical and Electronic Engineering, Halla University)
  • 황희수 (한라대학교 전기전자공학과)
  • Received : 2018.03.08
  • Accepted : 2018.05.20
  • Published : 2018.05.28

Abstract

In smart grid an accurate load forecasting is crucial in planning resources, which aids in improving its operation efficiency and reducing the dynamic uncertainties of energy systems. Research in this area has included the use of shallow neural networks and other machine learning techniques to solve this problem. Recent researches in the field of computer vision and speech recognition, have shown great promise for Deep Neural Networks (DNN). To improve the performance of daily electric peak load forecasting the paper presents a new deep neural network model which has the architecture of two multi-layer neural networks being serially connected. The proposed network model is progressively pre-learned layer by layer ahead of learning the whole network. For both one day and two day ahead peak load forecasting the proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange (KPX).

스마트그리드에서 정확한 단기 부하 예측을 통한 자원의 이용 계획은 에너지 시스템 운영의 불확실성을 줄이고 운영 효율을 높이는데 있어서 매우 중요하다. 단기 부하 예측에 얕은 신경회로망을 포함한 다수의 머신 러닝 기법이 적용되어왔지만 예측 정확도의 개선이 요구되고 있다. 최근에는 컴퓨터 비전이나 음성인식 분야에서 심층 신경회로망의 뛰어난 연구 결과로 인해 심층 신경회로망을 단기 전력수요 예측에 적용해 예측 정확도를 개선하려는 시도가 주목 받고 있다. 본 논문에서는 일별 전력 부하 첨두치를 예측하기 위한 다층신경회로망 구조의 심층 신경회로망 모델을 제안한다. 제안된 심층 신경회로망은 층별 학습이 선행된 후 전체 모델의 학습이 이루어진다. 한국전력거래소에서 얻은 4년 동안의 일별 전력 수요 데이터를 사용, 하루 및 이틀 앞선 전력수요 첨두치를 예측하는 심층 신경회로망 모델을 구축하고 예측 정확도를 비교, 평가한다.

Keywords

References

  1. A. J. Al-Shareef, E. A. Mohamed & E. Al-Judaibi. (2008). Next 24-hours Load Forecasting Using Artificial Neural Network for the Western Area of Saudi Arabia, JKAU: Eng. Sci., 19(2), 25-40. https://doi.org/10.4197/Eng.19-2.2
  2. B. H. Wang. (2009). Short-term Electrical Load Forecasting Using Neuro-fuzzy Model with Error Compensation, International Journal of Fuzzy Logic and Intelligent Systems, 9(4), 249-342. https://doi.org/10.5391/IJFIS.2009.9.4.249
  3. C. Ying, P. B. Luh, G. Che, Z. Yige, L. D. Michel, M. A. Coolbeth, P. B. Friedland & S. J Rourke. (2010). Short-term Load Forecasting: Similar Day-based Wavelet Neural Networks, IEEE Trans. on Power Systems, 25(1), 322-330. https://doi.org/10.1109/TPWRS.2009.2030426
  4. L. M. Saini. (2008). Peak Load Forecasting Using Bayesian Regularization, Resilient and Adaptive Backpropagation Learning Based Artificial Neural Networks, Electric Power Systems Research 78, 1302-1310. https://doi.org/10.1016/j.epsr.2007.11.003
  5. K. K. Seo. (2015). Sales Prediction of Electronic Appliances Using A Convergence Model Based on Artificial Neural Network and Genetic, Journal of digital Convergence, 13(9), 177-182. https://doi.org/10.14400/JDC.2015.13.9.177
  6. R. R. Agnaldo & P. A. Alexandre. (2005). Feature Extraction via Multi-resolution Analysis for Short-term Load Forecasting, IEEE Trans. Power Systems, 20(1), 189-198. https://doi.org/10.1109/TPWRS.2004.840380
  7. S. Fan & L. Chen. (2006). Short-term Load Forecasting Based on An Adaptive Hybrid Method, IEEE Trans. Power Systems, 23(1), pp. 392-401.
  8. T. Senjyu, P. Mandal, K. Uezato & T. Funabashi. (2004). Next Day Load Curve Forecasting Using Recurrent Neural Network Structure, IEE Proc.- Gener. Transm. and Distrib., 151(3), 388-394. https://doi.org/10.1049/ip-gtd:20040356
  9. Z. Yun, Z. Quan, S. Caixin, L. Shaolan, L. Yuming & S. Yang. (2008). RBF Neural Network and ANFIS-based Short-term Load Forecasting Approach in Real-Time Price Environment, IEEE Trans. on Power Systems, 23(3), 853-858. https://doi.org/10.1109/TPWRS.2008.922249
  10. T. Ouyang, Y. He, H. Li, Z. Sun & S. Baek. A Deep Learning Framework for Short-term Power Load Forecasting, https://arxiv.org/pdf/1711.11519.
  11. T. Hossen, S. J. Plathottam & R. K. Angamuthu. (2017). Short-term Load Forecasting Using Deep Neural Networks (DNN), Power Symposium (NAPS), North American, 17-19.
  12. K. Amarasinghe, D. L. Marino & M. Manic. (2017). Deep Neural Networks for Energy Load Forecasting, Industrial Electronics (ISIE), 2017 IEEE 26th International Symposium, 19-21.
  13. Wan He. (2017). Load Forecasting via Deep Neural Networks, Procedia Computer Science, 122, 308-314. https://doi.org/10.1016/j.procs.2017.11.374
  14. M. F. Moller. (1993). A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning, Neural Networks, 6, 525-533. https://doi.org/10.1016/S0893-6080(05)80056-5
  15. H. S. Hwang. (2013). Daily Electric Load Forecasting Based on RBF Neural Network Models, International Journal of Fuzzy Logic and Intelligent Systems, 13(1), 39-49. https://doi.org/10.5391/IJFIS.2013.13.1.39
  16. J. H. Lim, S. Y. Kim, J. D. Park & K. B. Song. (2013). Representative Temperature Assessment for Improvement of Short-Term Load Forecasting Accuracy, Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 27(6), 39-43. https://doi.org/10.5207/JIEIE.2013.27.6.039
  17. O. S. Kwon & K. B. Song. (2011). Development of Short-Term Load Forecasting Method by Analysis of Load Characteristics During Chuseok Holiday, The transactions of The Korean Institute of Electrical Engineers 60(12), 2215-2220. https://doi.org/10.5370/KIEE.2011.60.12.2215
  18. S. Y. Kim, J. H. Lim, J. D. Park & K. B. Song. (2013). Short-Term Electric Load Forecasting for the Consecutive Holidays Using the Power Demand Variation Rate, Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 27(6), 17-22. https://doi.org/10.5207/JIEIE.2013.27.6.017
  19. P. Zhang, X. Wu, X. Wang & S. Bi. (2015). Short-Term Load Forecasting Based on Big Data Technologies, CSEE Journal of Power And Energy Systems, 1(3). 59-67. https://doi.org/10.17775/CSEEJPES.2015.00036
  20. H. Zhao, Z. Tang, W. Shi & Z. Wang. (2017). Study of Short-term Load Forecasting In Big Data Environment, Control And Decision Conference, 28-30. DOI: 10.1109/CCDC.2017.7978378.