DOI QR코드

DOI QR Code

A Characterization of Involutes and Evolutes of a Given Curve in 𝔼n

  • Received : 2017.07.14
  • Accepted : 2018.02.08
  • Published : 2018.03.23

Abstract

The orthogonal trajectories of the first tangents of the curve are called the involutes of x. The hyperspheres which have higher order contact with a curve x are known osculating hyperspheres of x. The centers of osculating hyperspheres form a curve which is called generalized evolute of the given curve x in n-dimensional Euclidean space ${\mathbb{E}}^n$. In the present study, we give a characterization of involute curves of order k (resp. evolute curves) of the given curve x in n-dimensional Euclidean space ${\mathbb{E}}^n$. Further, we obtain some results on these type of curves in ${\mathbb{E}}^3$ and ${\mathbb{E}}^4$, respectively.

Keywords

References

  1. J. W. Bruce and P. J. Giblin, Curves and singularities: a geometrical introduction to singularity theory, Second edition, Cambridge University Press, Cambridge, 1992.
  2. B. Divjak and Z. M. Sipus, Involutes and evolutes in n-dimensional simply isotropic space ${\mathds{I}}_n^{(1)}$, J. Inf. Org. Sci., 23(1)(1999), 71-79.
  3. T. Fukunaga and M. Takahashi, Evolutes of fronts in the Euclidean plane, J. Singul., 10(2014), 92-107.
  4. T. Fukunaga and M. Takahashi, Involutes of fronts in the Euclidean plane, Beitr. Algebra Geom., 57(2016), 637-653. https://doi.org/10.1007/s13366-015-0275-1
  5. H. Gluck, Higher curvatures of curves in Euclidean space, Amer. Math. Monthly, 73(1966), 699-704. https://doi.org/10.1080/00029890.1966.11970818
  6. G. P. Henderson, Parallel curves, Canadian J. Math., 6(1954), 99-107. https://doi.org/10.4153/CJM-1954-012-3
  7. C. Huygens, Horologium oscillatorium sive de motu pendulorum ad horologia aptato, Demonstrationes Geometricae, 1673.
  8. B. Kilic, K. Arslan and G. Ozturk, Tangentially cubic curves in Euclidean spaces, Differ. Geom. Dyn. Syst., 10(2008), 186-196.
  9. F. Klein and S. Lie, Uber diejenigen ebenenen kurven welche durch ein geschlossenes system von einfach unendlich vielen vartauschbaren linearen Transformationen in sich ubergehen, Math. Ann., 4(1871), 50-84. https://doi.org/10.1007/BF01443297
  10. Z. Milin-Sipusand B. Divjak, Curves in n-dimensional k-isotropic space, Glas. Mat. Ser. III, 33(53)(1998), 267-286.
  11. J. Monterde, Curves with constant curvature ratios, Bol. Soc. Mat. Mexicana (3), 13(1)(2007), 177-186.
  12. G. Ozturk, K. Arslan and H. H. Hacisalihoglu, A characterization of ccr-curves in ${\mathbb{R}}^m$, Proc. Est. Acad. Sci., 57(4)(2008), 217-224. https://doi.org/10.3176/proc.2008.4.03
  13. E. Ozyimaz and S. Yilmaz, Involute-Evolute curve couples in the Euclidean 4-space, Int. J. Open Probl. Comput. Sci. Math., 2(2)(2009), 168-174.
  14. M. C. Romero-Fuster and E. Sanabria-Codesal, Generalized evolutes, vertices and conformal invariants of curves in ${\mathbb{R}}^{n+1}$, Indag. Math., 10(1999), 297-305. https://doi.org/10.1016/S0019-3577(99)80023-8
  15. E. Salkowski, Zur transformation von raumkurven, Math. Ann., 66(4)(1909), 517-557. https://doi.org/10.1007/BF01450047
  16. M. Turgut and T. A. Ali, Some characterizations of special curves in the Euclidean space ${\mathbb{E}}^4$, Acta Univ. Sapientiae Math., 2(1)(2010), 111-122.
  17. R. Uribe-Vargas, On singularites, "perestroikas" and differential geometry of space curves, Enseign. Math., 50(2004), 69-101.
  18. R. Uribe-Vargas, On vertices, focal curvatures and differential geometry of space curves, Bull Braz. Math. Soc, 36(2005), 285-307. https://doi.org/10.1007/s00574-005-0040-4