고출력 LED용 형광체 재료 개발

  • Published : 2018.03.31

Abstract

To realize a high luminous efficacy and a high emission color purity for the white-LEDs, the understanding for luminescence properties of the phosphors is significantly important because the performance of white-LEDs is directly affected by the luminescence properties of the phosphors. In this paper, therefore, we reviewed some commercially available $Eu^{2+}$- and $Ce^{3+}$- activated phosphors and discussed for the luminescence properties of these phosphors.

Keywords

References

  1. U. Kaufmann, M. Kunzer, K. Kohler, H. Obloh, W. Pletschen, P. Schlotter, J. Wagner, A. Ellens, W. Rossner and M. Kobusch, "Single Chip White LEDs", Phys. Stat. Sol. A, 192[2] 246-53 (2002). https://doi.org/10.1002/1521-396X(200208)192:2<246::AID-PSSA246>3.0.CO;2-I
  2. R. J. Xie and N. Hirosaki, "Silicon-based Oxynitride and Nitride Phosphors for White LEDs - A review", Sci. Technol. Adv. Mater., 8 588-600 (2007). https://doi.org/10.1016/j.stam.2007.08.005
  3. S. Neeraj, K. Kijima and A. K. Cheetham, "Novel Red Phosphor for Solid-state Lighting: the System NaM(WO4)2-x(MoO4)2x:Eu3+ (M = Gd, Y, Bi)", Chem. Phys. Lett., 387[1-3] 2-6 (2004). https://doi.org/10.1016/j.cplett.2003.12.130
  4. S. Shi, J. Gao and J. Zhou, "Effects of Charge Compensation on the Luminescence Behavior of Eu3+ Activated CaWO4 Phosphor", Opt. Mater., 30[10] 1616-20 (2008). https://doi.org/10.1016/j.optmat.2007.10.007
  5. M. Sato, S. W. Kim, Y. Shimomura, T. Hasegawa, K. Toda and G. Adachi, "Rare Earth-doped Phosphors for White Light-Emitting Diodes", Chapter 278 in Handbook on the Physics and Chemistry of Rare Earths, Vol. 49, Ed. by J. C. Bunzli and V. K. Pecharsky, Elsevier, New York, 2016.
  6. L. Chen, C. C. Lin, C. W. Yeh and R. S. Liu, "Light Converting Inorganic Phosphor for White Light-emitting Diodes", Materials 3 2172-95 (2010). https://doi.org/10.3390/ma3032172
  7. H. Tamaki and Y. Murazaki, "Phospors for Lamps"; pp. 533-43 in Phosphor for White Light-emitting Diodes, Vol. 5, Phosphor Handbook, second ed. Ed. by W. M. Yen, S. Shionoya and H. Yamamoto, CRC Press, New York (2007).
  8. A. Pavese, G. Artioli and M. Prencipe, "X-ray Single-crystal Diffraction Study of Pyrope in the Temperature Range 30-973 K," Am. Miner., 80 457-64 (1995). https://doi.org/10.2138/am-1995-5-606
  9. Y. Kanke and A. Navrotsky, "A Calorimetric Study of the Lanthanide Aluminum Oxides and the Lanthanide Gallium Oxides: Stability of the Perovskites and the garnets," J. Solid State Chem., 141 424-36 (1998). https://doi.org/10.1006/jssc.1998.7969
  10. V. Bachmann, C. Ronda and A. Meijerink, "Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce," Chem. Mater., 21 2077-84 (2009). https://doi.org/10.1021/cm8030768
  11. Y. Shimomura, T. Honma, M. Shigeiwa, T. Akai, K. Okamoto and K. Kijima, "Photoliminescence and Crystal Structure of Green-emitting $ Ca_3Sc_2Si_3O_{12}:Ce^{3+}$ Phosphor for White Light Emitting Diodes", J. electrochem. Soc., 154 J35-8 (2007). https://doi.org/10.1149/1.2388856
  12. A. Podhorodecki, P. Gluchowski, G. Zatryb, M. Syperek, J. Misiewicz, W. Lojkowski and W. Strek, "Influence of Pressure-induced Transition from Nanocrystals to Nanoceramic form on Optical Properties fo Ce-doped $Y_3Al_5O_{12}$," J. Am. Ceram. Soc., 94 2135-40 (2011). https://doi.org/10.1111/j.1551-2916.2010.04374.x
  13. J. Barbier and B. G. Hyde, "The Structure fo the Polymorphs of Dicalcium Silicate, $Ca_2SiO_4$," Acta Cryst. B, 41 383-90 (1985). https://doi.org/10.1107/S0108768185002348
  14. M. Catti, G. Gazzoni and G. Ivaldi, "Structures of Twinned ${\beta}-Sr_2SiO_4$ and ${\alpha}'-Sr_{1.9}Ba_{0.1}SiO_4$," Acta Cryst. C, 39 29-34 (1983).
  15. J. M. Fields, P. S. Brar and J. J. Brown, "Phase Equilibria in the System $BaO-SrO-SiO_2$", J. Am. Ceram. Soc., 55 585-88 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb13448.x
  16. T. L. Barry, "Fluorescence of $Eu^{2+}$-activated Phase in Binary Alkaline Earth Orthosilicate Systems." J. Electrochem. Soc., 115 1181-4 (1968). https://doi.org/10.1149/1.2410935
  17. L. Chen, A. Luo, Y. Jiang, F. Liu, X. Deng, S. Xue, X. Chen and Y. Zhang, "Suppressing the Phase Transformation and Enhancing the Orange Luminescence of $(Sr, Ba)_3SiO_5:Eu^{2+}$ for Application in White LEDs," Mater. Lett., 106 428-31 (2013). https://doi.org/10.1016/j.matlet.2013.05.057
  18. S. D. Jee, J. K. Park and S. H. Lee, "Photoluminescence Properties of $Eu^{2+}$-activated $Sr_3SiO_5$ Phosphors," J. Mater. Sci., 41 3139-41 (2006). https://doi.org/10.1007/s10853-006-6436-8
  19. E. H. Kang, S. W. Choi, S. E. Chung, J. Jang. S. Kwon and S. H. Hong, "Photoluminescence Characteristics of $Sr_3SiO_5:Eu^{2+}$ Yellow Phosphors Synthesized by Solid-state Method and Pechini Process," J. Electrochem. Soc., 158 J330-3 (2011). https://doi.org/10.1149/2.016111jes
  20. J. K. Park, C. H. Kim, S. H. Park, H. S. Park and S. Y. Choi, "Application of Strontium Silicate Yellow Phosphor for White Light-emitting Diodes," Appl. Phys. Lett., 84 1647-9 (2004). https://doi.org/10.1063/1.1667620
  21. L. S. D. Glasser and F. P. Glasser, "Silicate $M_3SiO_5$. I. $Sr_3SiO_5$," Acta Cryst., 18 453 (1965). https://doi.org/10.1107/S0365110X65000993
  22. J. K. Park, K. J. Choi, J. H. Yeon, S. J. Lee and C. H. Kim, "Embodiment of the Warm White-light-emitting Diodes by using a Ba2+ codoped $Sr_3SiO_5:Eu$ Phosphor," Appl. Phys. Lett., 88 043511 (2006). https://doi.org/10.1063/1.2166471
  23. Q. Shao, H. Lin, Y. Dong, Y. Fu, C. Liang, J. He and J. Jiang, "Thermostability and Photo-stability of $Sr_3SiO_5:Eu^{2+}$ Phosphors for White LED Applications," J. Solid State Chem., 225 72-7 (2015). https://doi.org/10.1016/j.jssc.2014.12.005
  24. K. Toda, Y. KAwakami, S. Kousaka, Y. Ito, A. Komeno, K. Uematsu and M. Sato, " New Silicate Phosphors for a White LED," IEICE Trans. Electron., E89-C 1406-12 (2006). https://doi.org/10.1093/ietele/e89-c.10.1406
  25. M. Pardha Saradhi and U. V. Varadaraju, "Photoluminescence Strudies on $Eu^{2+}$-activated $Li_2SrSiO_4$ a Potential Orange-Yellow Phosphor for Solid-state Lighting," Chem. Mater., 18 5267-72 (2006). https://doi.org/10.1021/cm061362u
  26. S. M. Levshov, I. V. Berezovskaya, N. P. Efryushina, B. I. Zadneprovskii and V. P. Dotsenko, "Synthesis and Luminescence Properties of $Eu^{2+}$-doped $Li_2SrSiO_4$," Inorg. Mater., 47 285-89 (2011). https://doi.org/10.1134/S0020168511030150
  27. J. S. Kim, P. E. Jeon, J. C. Choi and H. L. Park, "Emission Color Variation of $M_2SiO_4:Eu^{2+}$ (M = Ba, Sr, Ca) Phosphors for Light-emitting Diode," Solid State Commun., 133 187-90 (2005). https://doi.org/10.1016/j.ssc.2004.10.017
  28. J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi and H. L. Park, "Temperature-dependent emission spectra of $M_2SiO_4:Eu^{2+}$ (M = Ca, Sr, Ba) Phosphors for Green and Greenish White LEDs," Solid State Commun., 133 445-48 (2005) https://doi.org/10.1016/j.ssc.2004.12.002
  29. Y. Y. Luo, D. S. Jo, K. Senthil, S. Tezuka, M. Kakihana, K. Toda, T. MAsaki and D. H. Yoon, "Synthesis of High Efficient $Ca_2SiO_4:Eu^{2+}$ Green Emitting Phosphor by a Liquid Phase Precursor Method," J. Solid State Chem., 189 68-74 (2012). https://doi.org/10.1016/j.jssc.2011.11.046
  30. D. K. Smith, A. Majumdar and F. Ordway, "The Crystal Structure of $\gamma$-Dicalcium Solicate," Acta Cryst., 18 787-95 (1965). https://doi.org/10.1107/S0365110X65001780
  31. N. A. Yamanova, N. V. Zubkova, N. N. Eremin, A. E. Zadov and V. M. Gazeev, "Crystal Structure of Larnite ${\beta}-Ca_2SiO_4$ and Specific Features of Polymorphic Transitions in Dicalcium Orthosilicate," Cryst. Rep., 56 210-20 (2011). https://doi.org/10.1134/S1063774511020209
  32. S. Tezuka, Y. Sato, T. Komukai, Y. Takatsuka, H. Kato and M. Kakihana, "$Eu^{2+}$-activated $CaSrSiO_4$: A New Red-emitting Oxide Phosphor for White-light-emitting Diodes," Appl. Phys. Express, 6 072101 (2013). https://doi.org/10.7567/APEX.6.072101
  33. Y. Sato, H. Kato, M. Kobayashi, T. Masaki, D. H. Yoon and M. Kakihana, "Tailoring of Deep-red Luminescence in $Ca_2SiO_4:Eu^{2+}$," Angew. Chem. Int. Ed., 53 7756-59 (2014). https://doi.org/10.1002/anie.201402520
  34. S. W. Kim, T. Hasegawa, T. Ishigaki, K. Uematsu, K. Toda and M. Sato, "Efficient Red Emission of Blue-Light Excitable New Structure Type $NaMgPO_4:Eu^{2+}$ Phosphor," ECS Solid State Lett., 2 R49-51 (2013).
  35. W. Tang and Y. Zheng, "Synthesis and Luminescence Properties of a Novel Blue Emitting Phosphor $NaMgPO_4:Eu^{2+}$," Luminescence, 25 364-6 (2010). https://doi.org/10.1002/bio.1158
  36. K. Uheda, N. Hirosaki and H. Yamamoto, "Host Lattice Materials in the System $Ca_3N_2-AlN-Si_3N_4$ for White Light Emitting Diode," Phys. Status Solidi A, 203 2712-7 (2006). https://doi.org/10.1002/pssa.200669576
  37. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima and H. Yamamoto, "Luminescence Properties of a Red Phosphor, $CaAlSiN_3:Eu^{2+}$, for White Light-emitting Diodes," Electrochem. Solid-State Lett., 9 H22-5 (2006). https://doi.org/10.1149/1.2173192
  38. H. Watanabe, H. Yamane and N. Kijima, "Crystal Structure and Luminescence of $Sr_{0.99}Eu_{0.01}AlSiN_3$," J. Solid State Chem., 181 1848-52 (2008). https://doi.org/10.1016/j.jssc.2008.04.017
  39. H. Watanabe, H. Wada, K. Seki, M. Itou and N. Kijima, "Synthetic Method and Luminescence Properties of $Sr_xCa_{1-x}AlSiN_3:Eu^{2+}$ Mixed Nitride Phosphors," J. Electrochem. Soc., 155 F31-6 (2008). https://doi.org/10.1149/1.2829880
  40. H. Watanabe and N. Kijima, "Crystal Structure and Luminescence Properties of $Sr_xCa_{1-x}AlSiN_3:Eu^{2+}$ Mixed Nitride Phosphors," J. Alloy Compd., 475 434-39 (2009). https://doi.org/10.1016/j.jallcom.2008.07.054
  41. X. Piao, K. Machda, T. Horikawa, H. Hanzawa, Y. Shimomura and N. Kijima, "Preparation of $CaAlSiN_3:Eu^{2+}$ Phosphors by the Self-propagating High-temperature Synthesis and Their Luminescence Properties," Chem. Mater., 19 4592-9 (2007) https://doi.org/10.1021/cm070623c
  42. M. Mikami, H. Watanabe, K. Uheda, S. Shimooka, Y. Shimomura and N. Kijima, "New Phosphor for White LEDs: Materials Design Concepts," Mater. Sci. Eng., 1 012002 (2009).
  43. M. Mikami, S. Shimooka, K. Uheda, H. Imura and N. Kijima, "New Green Phosphor $Ba_3Si_6O_{12}N_2:Eu$ for White LED: Crystal Structure and Optical Properties," Key Eng. Mater., 403 11-4 (2009).
  44. H. A. Hoppe, H. Lutz, P. Morys, W. Schnick and A. Srilmeier, "Luminescence in $Eu^{2+}$-doped $Ba_2Si_5N_8$: Fluorescence, Thermoluminescence, and Upconversion," J. Phys. Chem. Solids, 61 2001-6 (2000). https://doi.org/10.1016/S0022-3697(00)00194-3
  45. Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With and H. T. Hintzen, "Luminescence Properties of Red-emitting $M_2Si_5N_8:Eu^{2+}$ (M = Ca, Sr, Ba) LED Converstion Phosphors," J. Alloys Compd., 417 273-9 (2006). https://doi.org/10.1016/j.jallcom.2005.09.041
  46. T. Suehiro, R. J. Xie and N. Hirosaki, "Facile Synthesis of $ (Sr,\;Ca)_2Si_5N_8:Eu^{2+}$-based Red-emitting Phosphor for Solid-state Lighting," Ind. Eng. Chem. Res., 52 7453-6 (2013). https://doi.org/10.1021/ie400741u
  47. R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu and M. Mitomo, "A Simple, Efficient Synthetic Route to $Sr_2Si_5N_8:Eu^{2+}$-based Red Phosphors for White Light-emitting Diodes," Chem. Mater., 18 5578-83 (2006). https://doi.org/10.1021/cm061010n
  48. R. J. Xie, N. Hirosaki, Y. Li and T. Takeda. "Rareearth Activated Nitride Phosphors: Synthesis, Luminescence and Applications, Materials, 3 3777-93 (2010). https://doi.org/10.3390/ma3063777
  49. R. J. Xie, Y. Q. Li, N. Hirosaki and H. Yamamoto, "Nitride Phosphors and Solid-State Lighting," pp.77-83, CRC Press, New York (2011).
  50. R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma and M. Mitomo, "2-Phosphor-converted White Light-emitting Diodes using Oxynitride/nitride Phosphors," Appl. Phys. Lett., 90, 1101-3 (2007).
  51. Y. Oyama and O. Kamigaito, "Solid Solubility of Some Oxide in $Si_3N_4$," Jpn. J. Appl. Phys., 10 1637 (1971). https://doi.org/10.1143/JJAP.10.1637
  52. K. H. Jack and W. I. Wilson, "Ceramics based on the Si-Al-O-N and Related Systems," Nat. Phys. Sci., 238 28-9 (1972). https://doi.org/10.1038/physci238028a0
  53. N. Hirosaki, R. J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, "Characterization and Properties of Green-emitting ${\beta}-SiAlON:Eu^{2+}$ Powder Phosphors for White Light-emitting Diodes," Appl. Phys. Lett., 86 211905 (2005). https://doi.org/10.1063/1.1935027
  54. P. Pust, V. Weiler, C. Hecht, A. Tücks, A. S. Wochnik, A. K. HenB, D. Wiechert, C. Scheu, P. J. Schmidt and W. Schnick, "Narrow-band Red-emitting $Sr[LiAl_3N_4]:Eu^{2+}$ as a Next-generation LED-phosphor Materials," Nat. Mater., 13 891-6 (2014). https://doi.org/10.1038/nmat4012
  55. S. W. Kim, T. Hasegawa, S. Hasegawa, R. Yamanashi, H. Nakagawa, K. Toda, T. Ishigaki, K. Uematsu and M. Sato, "Improved Synthesis of $SrLiAl_3N_4:Eu^{2+}$ Phosphor Using Complex Nitride Raw Material," RSC Adv., 6 61906-8 (2016). https://doi.org/10.1039/C6RA14107B
  56. P. Pust, A. S. Wochnik, E. Baumann, P. J. Schmidt, D. Wiechert, C. Scheu and W. Schnick, "$Ca[LiAl_3N_4]:Eu^{2+}$-A Narrow-Band Red-Emitting Nitridolithoaluminate," Chem. Mater., 26 3544-9 (2014). https://doi.org/10.1021/cm501162n
  57. Z, Wang, I. H. Chu, F. Zhou and S. P. Ong, "Electronic Structure Descriptor for the Discovery of Narrow-Band Red-emitting Phosphors," Chem. Mater., 28 4024-31 (2016). https://doi.org/10.1021/acs.chemmater.6b01496
  58. S. Adach and T. Takahashi, "Direct Synthesis and Properties of $K_2SiF_6:Mn^{4+}$ Phosphor by Wet Chemical Etching of Si Wafer," J. Appl. Phys., 104 023512 (2008). https://doi.org/10.1063/1.2956330
  59. C. Liao, R. Cao, Z. Ma, Y. Li, G. Dong, K. N. Sharafudeen and J. Qiu, "Synthesis of $K_2SiF_6:Mn^{4+}$ Phosphor from $SiO_2$ Powder via Redox Reaction in $HF/KMnO_4$ Solution and Their Application in Warm-White LED," J. Am. Ceram. Soc., 96 3552-6 (2013). https://doi.org/10.1111/jace.12533
  60. H. F. Sijbom, J. J. Joos, L. I. D. J. Martin, K. V. den Eckhout, D. Poelman and P. F. Smet, "Luminescent Behavior of the $K_2SiF_6:Mn^{4+}$ Red Phosphor at High Fluxes and at the Microscopic Level," ECS J. Solid State Sci. Tech., 5 R3040-8 (2016). https://doi.org/10.1149/2.0051601jss
  61. H. F. Sijbom, R. Verstraete, J. J. Joos, D. Poelman and P. F. Smet, "$K_2SiF_6:Mn^{4+}$ as a Red Phosphor for Displays and Warm-white LEDs: A Review of Properties and Perspectives," Opt. Mater. Express, 7 3332-65 (2017). https://doi.org/10.1364/OME.7.003332
  62. J. H. Oh, H. Kang, Y. J. Eo, H. K. Park and Y. R. Do, "Synthesis of Narrow-band Red-emitting $K_2SiF_6:Mn^{4+}$ Phosphors for a Deep Red Monochromatic LED and Ultrahigh Color Quality Warm-white LEDs," J. Mater. Chem. C, 3 607-15 (2015). https://doi.org/10.1039/C4TC02042A
  63. J. W. Moon, B. G. Min, J. S. Kim, M. S. Jang, K. M. Ok, K. Y. Han and J. S. Yoo, "Optical Characteristics and Longevity of the Line-emitting $K_2SiF_6:Mn^{4+}$ Phosphor for LED Application," Opt. Mater. Express, 6 782-92 (2016). https://doi.org/10.1364/OME.6.000782
  64. S. Fulita, S. Yoshihara, A. Sakamoto, S. Yamamoto and S. Tanabe, "YAG Glass-ceramic Phosphor for White LED (I): Background and Development," Proc. of SPIE, 5940 594111-1 (2005).
  65. J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone and Y. Park, "Strongly Enhanced Phosphor Efficiency in GaInN White Light-emitting Diodes using Remote Phosphor Configuration and Diffuse Reflector Cup," Jpn. J. Appl. Phys., 44 L649-51 (2005). https://doi.org/10.1143/JJAP.44.L649
  66. Dal Lago, M. Meneghini, N. Trivellin, G. Mura, M. Vanzi, G. Meneghesso, E. Zanoni, "Phosphor for LED-based Light Sources: Thermal Properties and Reliability Issues Microelectron," Reliab., 52 2164-67 (2012). https://doi.org/10.1016/j.microrel.2012.06.036
  67. H. J. Jeong, C. Huh, T. Y. Lim, J. H. Kim, M. J. Lee, D. W. Jeon, J. Hwang, T. H. Park and D. Shin, "Effect of Glass Composition on the Luminescence Characteristics of Color Conversion Glasses in $BaO-ZnO-B_2O_3-SiO_2$ Glasses," J. Non-Cryst. Solids, 423-424 25-9 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.05.012
  68. H. J. Jeong, D. W. Jeon, J. H. Kim, Y. J. Lee M. J. Lee, J. Hwang, H. A. Park, H. S. Lim, J. Lee, T. H. Park and D. Shin, "Mixed Alkali Effect on the Luminescence Characteristics of Color Conversion Glasses," J. Ceram. Process. Res., 17 694-8 (2016)
  69. S. Fujita and S. Tanabe, "Thermal Quenching of $Ce^{3+}:Y_3Al_5O_{12}$ Glass-Ceramic Phosphor," Jpn. J. Appl. Phys., 48 120210 (2009). https://doi.org/10.1143/JJAP.48.120210
  70. S. Arjoca, E. G. Víllora, D. Inomata, K. Aoki, Y. Sugahara and K. Shimamura, "Temperature Dependence of Ce:YAG Single-crystal Phosphor for High-brightness White LEDs," Mater. Res. Express, 2 055503 (2015). https://doi.org/10.1088/2053-1591/2/5/055503
  71. S. Arjoca, D. Inomata, Y. Matsushita and K. Shimamura, "Growth and Optical Properties of $(Y_{1-x}Gd_x)_3Al_5O_{12}:Ce$ Single Crystal Phosphors for high-brightness Neutral White LEDs and LDs," CrystEngComm., 18 4799-806 (2016). https://doi.org/10.1039/C6CE00500D
  72. E. G. Víllora, S. Arjoca, D. Inomata and K. Shimamura, "Single-crystal Phosphors for High-brightness White LEDs/LDs," Proc. SPIE, 9768 976805 (2016).
  73. S. Arjoca, E. G. Víllora, D. Inomata, Y. Arai, Y. Cho, T. Sekiguchi and K. Shimamura, "High Homogeneity, Thermal Stability and External Quantum Efficiency of Ce:YAG Single-crystal Powder Phosphors for White LEDs," J. Ceram. Soc. Jpn., 124 574-8 (2016). https://doi.org/10.2109/jcersj2.15303
  74. T. Ishikawa, S. I. Sakata and A. Mitani, "Durable, Ultraluminous Structure for Incandescent, High-power White-LED," Int. J. Appl. Technol., 3 144-9 (2006).
  75. S. Yamada, M. Yoshimura, S. I. Sakata, T. Taishi and K. Hoshikaw, "Colony Structure in Ce-doped $Al_2O_3/YAG$ Eutectic Systems Grown by Vertical Bridgman Technique," J. Cryst. Growth, 448 1-5 (2016). https://doi.org/10.1016/j.jcrysgro.2016.05.003
  76. M. Yoshimura, S. I. Sakata, H. Iba, T. Kawano and K. Hoshikaw, "Vertical Bridgman Growth of $Al_2O_3/YAG:Ce$ Melt Growth Composite," J. Cryst. Growth, 416 100-5 (2015) https://doi.org/10.1016/j.jcrysgro.2015.01.008
  77. S. Ochiai, Y. Sakai, K. Kuhara, S. Iwamoto, J. Sha, H. Okuda, M. Tanaka, M. Hojo, Y. Waku, N. Nakagawa, S. I. Sakata, A. M. Itani, M. Sato and T. Ishikawa, "Analytical Modeling of Stress-strain Behavior at 1873K of Alumina/YAG Composite Compressed Parallel and Perpendicular to the Solidification Direction," Compos. Sci. Technol., 67 270-7 (2007). https://doi.org/10.1016/j.compscitech.2006.08.013