• Title/Summary/Keyword: BDBA

Search Result 5, Processing Time 0.019 seconds

Neutronic assessment of BDBA scenario at the end of Isfahan MNSR core life

  • Ahmadi, M.;Pirouzmand, A.;Rabiee, A.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1037-1042
    • /
    • 2018
  • The present study aims to assess the excess induced reactivity in a Miniature Neutron Source Reactor (MNSR) for a Beyond Design Basis Accident (BDBA) scenario. The BDBA scenario as defined in the Safety Analysis Report (SAR) of the reactor involves sticking of the control rod and filling of the inner and outer irradiation sites with water. At the end of the MNSR core life, 10.95 cm of Beryllium is added to the top of the core as a reflector which affects some neutronic parameters such as effective delayed neutrons fraction (${\beta}_{eff}$), the reactivity worth of inner and outer irradiation sites that are filled with water and the reactivity worth of the control rod. Given those influences and changes, new neutronic calculations are required to be able to demonstrate the reactor safety. Therefore, a validated MCNPX model is used to calculate all neutronic parameters at the end of the reactor core life. The calculations show that the induced reactivity in the BDBA scenario increases at the end of core life to $7.90{\pm}0.01mk$ which is significantly higher than the induced reactivity of 6.80 mk given in the SAR of MNSR for the same scenario but at the beginning of the core's life. Also this value is 3.90 mk higher than the maximum allowable operational limit (i.e. 4.00 mk).

Geometries and Relative Stabilities of AlN Four-Membered-Ring Compound Isomers: Ab initio Study

  • Park, Sung-Soo;Lee, Kee-Hag;Suh, Young-Sun;Lee, Chang-Hoon;Luthi, Hans P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.241-244
    • /
    • 2002
  • Using ab initio method, we have studied the structural stabilities, the electronic structures and properties between the two isomers with $C_{2h}$ and $C_{2v}$ symmetry of AlN four-membered-ring single precursors $[Me_2AlNHR]_2$ (R = Me, $^iPr$, and $^iBu$). In the viewpoint of bond lengths in optimized structures, the N-C bonds are considerably affected by the change of the R groups bonded to nitrogen, but the bonding characters of the Al-N and Al-C bonds are little affected. Also the structural stabilities between the two isomers with $C_{2h}$ and $C_{2v}$ symmetry by using Hartree-Fock (HF) and the second order Moeller-Pleset (MP2) calculations agree well with the experimental results for the relative stability of bis(dimethyl- m-isopropylamido-aluminum) (BDPA) and bis(dimethyl- m-t-butylamido-aluminum) (BDBA), while the semiempirical AM1 and PM3 calculations for BDPA were reverse. Thus, our results may aid in designing an optimum precursor for a given process by explaining the experimental results through the elimination of the R groups bonded to nitrogen.

PRESENT DAY EOPS AND SAMG - WHERE DO WE GO FROM HERE?

  • Vayssier, George
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.225-236
    • /
    • 2012
  • The Fukushima-Daiichi accident shook the world, as a well-known plant design, the General Electric BWR Mark I, was heavily damaged in the tsunami, which followed the Great Japanese Earthquake of 11 March 2011. Plant safety functions were lost and, as both AC and DC failed, manoeuvrability of the plants at the site virtually came to a full stop. The traditional system of Emergency Operating Procedures (EOPs) and Severe Accident Management Guidelines (SAMG) failed to protect core and containment, and severe core damage resulted, followed by devastating hydrogen explosions and, finally, considerable radioactive releases. The root cause may not only have been that the design against tsunamis was incorrect, but that the defence against accidents in most power plants is based on traditional assumptions, such as Large Break LOCA as the limiting event, whereas there is no engineered design against severe accidents in most plants. Accidents beyond the licensed design basis have hardly been considered in the various designs, and if they were included, they often were not classified for their safety role, as most system safety classifications considered only design basis accidents. It is, hence, time to again consider the Design Basis Accident, and ask ourselves whether the time has not come to consider engineered safety functions to mitigate core damage accidents. Associated is a proper classification of those systems that do the job. Also associated are safety criteria, which so far are only related to 'public health and safety'; in reality, nuclear accidents cause few casualties, but create immense economical and societal effects-for which there are no criteria to be met. Severe accidents create an environment far surpassing the imagination of those who developed EOPs and SAMG, most of which was developed after Three Mile Island - an accident where all was still in place, except the insight in the event was lost. It requires fundamental changes in our present safety approach and safety thinking and, hence, also in our EOPs and SAMG, in order to prevent future 'Fukushimas'.

Prediction of radioactivity releases for a Long-Term Station Blackout event in the VVER-1200 nuclear reactor of Bangladesh

  • Shafiqul Islam Faisal ;Md Shafiqul Islam;Md Abdul Malek Soner
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.696-706
    • /
    • 2023
  • Consequences of an anticipated Beyond Design Basis Accident (BDBA) Long-Term Station Blackout (LTSBO) event with complete loss of grid power in the VVER-1200 reactor of Rooppur Nuclear Power Plant (NPP) of Unit-1 are assessed using the RASCAL 4.3 code. This study estimated the released radionuclides, received public radiological dose, and ground surface concentration considering 3 accident scenarios of International Nuclear and Radiological Event Scale (INES) level 7 and two meteorological conditions. Atmospheric transport, dispersion, and deposition processes of released radionuclides are simulated using a straight-line trajectory Gaussian plume model for short distances and a Gaussian puff model for long distances. Total Effective Dose Equivalent (TEDE) to the public within 40 km and radionuclides contribution for three-dose pathways of inhalation, cloudshine, and groundshine owing to airborne releases are evaluated considering with and without passive safety Emergency Core Cooling System (ECCS) in dry (winter) and wet (monsoon) seasons. Source term and their release rates are varied with the functional duration of passive safety ECCS. In three accident scenarios, the TEDE of 10 mSv and above are confined to 8 km and 2 km for the wet and dry seasons, respectively in the downwind direction. The groundshine dose is the most dominating in the wet season while the inhalation dose is in the dry season. Total received doses and surface concentration in the wet season near the plant are higher than those in the dry season due to the deposition effect of rain on the radioactive substances.

Effect of pH on UV Photodegradation of N-Nitrosamines in Water (수용액상 니트로스아민의 UV 광분해에서 pH 영향)

  • Shim, Jae-Goo;Aqeel, Afzal;Choi, Bo-Mi;Lee, Jung-Hyun;Kwak, No-Sang;Lim, Ho-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.4
    • /
    • pp.357-366
    • /
    • 2016
  • N-nitrosamines are a class of carcinogenic chemicals that can pose significant hazards to the human life. Ultraviolet (UV) light irradiation is considered as one of the effective methods to reduce N-nitrosamines in the aqueous phase. This study aimed to investigate the pH influence on UV photodegradation of N-nitrosamines (i.e., N-nitrosodibutylamine (NDBA) and N-nitrosopyrrolidine (NPYR)) closely related to water treatment. Photodegradation rate constants of NDBA and NPYR remained between 3.26×10-2 L/W-min to 5.08×10-3 L/W-min and 1.14×10-2 L/W-min to 2.80×10-3 L/W-min at pH2-10, respectively. This study also focused on the formation of oxidized products (i.e., primarily NO2- and NO3-). Under slightly acidic and neutral conditions, NO2- formation was more prevalent than NO3- formation, while under strong acidic conditions, NO3- was more prevalent. There was no significant change in total organic carbon (TOC) and total nitrogen (TN), suggesting negligible loss of N-nitrosamines and degradation products from the system. NDBA was easily photodegraded than NPYR. This study also demonstrated that a lower pH is a favorable condition for photolytic degradation of N-nitrosamines in water.