DOI QR코드

DOI QR Code

Synthesis, Characterizations and Gas Separation Property of PBEM-PMMA-POEM Terpolymer Membranes

PBEM-PMMA-POEM 터폴리머 분리막의 합성, 분석 및 기체 분리 성능

  • Park, Byeong Ju (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Na Un (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Jung Tae (Department of Chemical Engineering, Konkuk University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 박병주 (연세대학교 화공생명공학과) ;
  • 김나운 (연세대학교 화공생명공학과) ;
  • 박정태 (건국대학교 화학공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2018.04.24
  • Accepted : 2018.04.29
  • Published : 2018.04.30

Abstract

Terpolymers, which are chemical compounds composed of three different chemical compounds, have rarely been utilized for gas separation membranes. In this study, we demonstrate a simple process to fabricate a composite membrane for $CO_2/N_2$ separation based on a terpolymer synthesized from poly(2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl] ethylmethacrylate)(PBEM), poly(oxyethylene methacrylate)(POEM), and methyl methacrylate (MMA) via free radical polymerization. A solution of the as-synthesized PBEM-PMMA-POEM was coated onto a microporous polysulfone (PSf) support to form a composite membrane. The successful polymerization and the characteristics and morphology of the membrane were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FE-SEM). The gas permeance and $CO_2/N_2$ selectivity of the PBEM-PMMA-POEM terpolymer membrane were measured at $25^{\circ}C$. A maximum $CO_2/N_2$ selectivity of 30.2 was obtained at a $CO_2$ permeance of 57.4 GPU ($1GPU=10^{-6}cm^3$(STP)/($s\;cm^2\;cmHg$)).

세 가지의 다른 화학 성분으로 구성된 터폴리머는 기체분리막에 거의 활용되지 못하였다. 본 연구에서는 poly(2-[3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl] ethylmethacrylate)(PBEM), poly(oxyethylene methacrylate)(POEM), methyl methacrylate (MMA)로 구성된 터폴리머를 자유라디칼 중합법으로 합성하였고, 이를 기반으로 하여 이산화탄소/질소 분리를 위한 복합막 제조 공정을 개발하였다. 합성된 PBEM-PMMA-POEM 용액을 다공성 폴리설폰 지지체위에 코팅하여 복합막을 제조하였다. 성공적인 중합, 특성 및 구조분석을 위하여 푸리에 변환 적외선 분광학, X-ray 회절분석법, 열중량 분석 및 전계방사 주사전자 현미경을 사용하였다. PBEM-PMMA-POEM 터폴리머 분리막의 기체 투과도 및 이산화탄소/질소 선택도를 $25^{\circ}C$에서 측정하였다. 최고의 이산화탄소/질소 선택도는 30.2에 도달하였으며, 이산화탄소 투과도는 57.4 GPU ($1GPU=10^{-6}cm^3$(STP)/($s\;cm^2\;cmHg$))이었다.

Keywords

References

  1. S. Luo, Q. Liu, B. Zhang, J. R. Wiegand, B. D. Freeman, and R. Guo, "Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation", J. Membr. Sci., 480, 20 (2015). https://doi.org/10.1016/j.memsci.2015.01.043
  2. Y. Zhuang, J. G. Seong, Y. S. Do, H. J. Jo, Z. Cui, J. Lee, Y. M. Lee, and M. D. Guiver, "Intrinsically microporous soluble polyimides incorporating Tröger's base for membrane gas separation", Macromolecules, 47, 3254 (2014). https://doi.org/10.1021/ma5007073
  3. R. W. Baker and B. T. Low, "Gas separation membrane materials: A perspective", Macromolecules, 47, 6999 (2014). https://doi.org/10.1021/ma501488s
  4. Y. Peng, Y. Li, Y. Ban, and W. Yang, "Two-dimensional metal-organic framework nanosheets for membrane-based gas separation", Angew. Chem. Int. Ed., 56, 9757 (2017). https://doi.org/10.1002/anie.201703959
  5. L. Xiang, Y. Pan, G. Zeng, J. Jiang, J. Chen, and C. Wang, "Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for $CO_2/N_2$ separation", J. Membr. Sci., 500, 66 (2016). https://doi.org/10.1016/j.memsci.2015.11.017
  6. C. Sun, B. Wen, and B. Bai, "Application of nanoporous graphene membranes in natural gas processing: Molecular simulations of $CH_4/CO_2$, $CH_4/H_2S$ and $CH_4/N_2$ separation", Chem. Eng. Sci., 138, 616 (2015). https://doi.org/10.1016/j.ces.2015.08.049
  7. C. H. Park, J. H. Lee, M. S. Park, and J. H. Kim, "Facilitated transport: basic concepts and applications to gas separation membranes", Membr. J., 27, 205 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.205
  8. K. W. Ki and S. W. Kang, "1-Butyl-3-methylimidazolium tetrafluoroborate/$Al_2O_3$ composite membrane for $CO_2$ separation", Membr. J., 27, 226 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.226
  9. L. Zhao, Y. Chen, B. Wang, C. Sun, S. Chakraborty, K. Ramasubramanian, P. K. Dutta, and W. S. W. Ho, "Multilayer polymer/zeolite Y composite membrane structure for $CO_2$ capture from flue gas", J. Membr. Sci., 498, 1 (2016). https://doi.org/10.1016/j.memsci.2015.10.006
  10. Y. Zhang, X. Feng, S. Yuan, J. Zhou, and B. Wang, "Challenges and recent advances in MOF-polymer composite membranes for gas separation", Inorg. Chem. Front., 3, 896 (2016). https://doi.org/10.1039/C6QI00042H
  11. W. Ma, S. Rajabzadeh, A. R. Shaikh, Y. Kakihana, Y. Sun, and H. Matsuyama, "Effect of type of poly(ethylene glycol)(PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly(vinylidene fluoride)(PVDF) blend membranes", J. Membr. Sci., 514, 429 (2016). https://doi.org/10.1016/j.memsci.2016.05.021
  12. W. Wang, J. Lin, C. Cai, and S. Lin, "Optical properties of amphiphilic copolymer-based self-assemblies", Eur. Polym. J., 65, 112 (2015). https://doi.org/10.1016/j.eurpolymj.2015.01.023
  13. M. J. Derry, L. A. Fielding, and S. P. Armes, "Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization", Prog. Polym. Sci., 52, 1 (2016). https://doi.org/10.1016/j.progpolymsci.2015.10.002
  14. B. Sarkar and P. Alexandridis, "Block copolymer-nanoparticle composites: Structure, functional properties, and processing", Prog. Polym. Sci., 40, 33 (2015). https://doi.org/10.1016/j.progpolymsci.2014.10.009
  15. W. S. Chi, S. J. Kim, S. J. Lee, Y. S. Bae, and J. H. Kim, "Enhanced performance of mixed-matrix membranes through a graft copolymer-directed interface and interaction tuning approach", Chem. Sus. Chem., 8, 650 (2015). https://doi.org/10.1002/cssc.201402677
  16. J. Y. Lim, C. S. Lee, J. M. Lee, J. M. Ahn, H. H. Cho, and J. H. Kim, "Amphiphilic block-graft copolymer templates for organized mesoporous $TiO_2$ films in dye-sensitized solar cells, J. Power Sources, 301, 18 (2016). https://doi.org/10.1016/j.jpowsour.2015.09.109
  17. P. Sun, K. Wang, and H. Zhu, "Recent developments in graphene-based membranes: Structure, mass-transport mechanism and potential applications", Adv. Mater., 28, 2287 (2016). https://doi.org/10.1002/adma.201502595
  18. S. Quan, Y. P. Tang, Z. X. Wang, Z. X. Jiang, R. G. Wang, Y. Y. Liu, and L. Shao, "PEG-imbedded PEO membrane developed by a novel highly efficient strategy toward superior gas transport performance", Macromol. Rapid Commun., 36, 490 (2015). https://doi.org/10.1002/marc.201400633
  19. C. Zhang, P. Li, and B. Cao, "Effects of the side groups of the spirobichroman-based diamines on the chain packing and gas separation properties of the polyimides", J. Membr. Sci., 530, 176 (2017). https://doi.org/10.1016/j.memsci.2017.02.030
  20. J. H. Lee, J. P. Jung, E. Jang, K. B. Lee, Y. S. Kang, and J. H. Kim. "$CO_2$-philic PBEM-g-POEM comb copolymer membranes: Synthesis, characterization and $CO_2/N_2$ separation", J. Membr. Sci., 502, 191 (2016). https://doi.org/10.1016/j.memsci.2015.12.005
  21. M. S. Islam, J. H. Yeum, and A. K. Das, "Synthesis of poly(vinyl acetate-methyl methacrylate) copolymer microspheres using suspension polymerization", J. Colloid Interface Sci., 368, 400 (2012). https://doi.org/10.1016/j.jcis.2011.11.002
  22. A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, "Membrane technologies for $CO_2$ separation", J. Membr. Sci., 359, 115 (2010). https://doi.org/10.1016/j.memsci.2009.11.040
  23. P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation: A review/state of the art", Ind. Eng. Chem. Res., 48, 4638 (2009). https://doi.org/10.1021/ie8019032