DOI QR코드

DOI QR Code

Preparation of fluorinated graphite with high fluorine content and high crystallinity

  • Jung, Min-Jung (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Yu, Hye-Ryeon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • Received : 2017.11.15
  • Accepted : 2018.01.09
  • Published : 2018.04.30

Abstract

Keywords

References

  1. Hamwi A. Fluorine reactivity with graphite and fullerenes: fuo- ride derivatives and some practical electrochemical applications. J Phys Chem Solids, 57, 677 (1996). https://doi.org/10.1016/0022-3697(95)00332-0.
  2. Mar M, Ahmad Y, Guerin K, Dubois M, Batisse N. Fluorinated exfoliated graphite as cathode materials for enhanced performances in primary lithium battery. Electrochim Acta, 227, 18 (2017). https://doi.org/10.1016/j.electacta.2016.12.137.
  3. Groult H, Nakajima T, Perrigaud L, Ohzawa Y, Yashiro H, Komaba S, Kumagai N. Surface-fuorinated graphite anode materials for Li-ion batteries. J Fluorine Chem, 126, 1111 (2005). https://doi.org/10.1016/j.jfuchem.2005.03.014.
  4. Gupta V, Nakajima T, Ohzawa Y, Zemva B. A study on the formation mechanism of graphite fuorides by Raman spectroscopy. J Fluorine Chem, 120, 143 (2003). https://doi.org/10.1016/S0022-1139(02)00323-8.
  5. Kita Y, Watanabe N, Fujii Y. Chemical composition and crystal structure of graphite fuoride. J Am Chem Soc, 101, 3832 (1979). https://doi.org/10.1021/ja00508a020.
  6. Jeong E, Jung MJ, Lee SG, Kim HG, Lee YS. Role of surface fuorine in improving the electrochemical properties of Fe/MW- CNT electrodes. J Ind Eng Chem, 43, 78 (2016). https://doi.org/10.1016/j.jiec.2016.07.050.
  7. Park MS, Kim KH, Lee YS. Fluorination of single-walled carbon nanotube: the effects of fuorine on structural and electrical properties. J Ind Eng Chem, 37, 22 (2016). https://doi.org/10.1016/j.jiec.2016.03.024.
  8. Nakajima T, Gupta V, Ohzawa Y, Groult H, Mazej Z, Zemva B. Infuence of cointercalated HF on the electrochemical behavior of highly fuorinated graphite. J Power Sources, 137, 80 (2004). https://doi.org/10.1016/j.jpowsour.2004.05.042.
  9. Delabarre C, Guerin K, Dubois M, Giraudet J, Fawal Z, Hamwi A. Highly fuorinated graphite prepared from graphite fuoride formed using BF3 catalyst. J Fluorine Chem, 126, 1078 (2005). https://doi.org/10.1016/j.jfuchem.2005.03.019.
  10. Wu Z, Li J, Timmer D, Lozano K, Bose S. Study of processing variables on the electrical resistivity of conductive adhesives. Int J Adhes Adhes, 29, 488 (2009). https://doi.org/10.1016/j.ijad-hadh.2008.10.003.
  11. Kabtamu DM, Chen JY, Chang UC, Wang CH. Water-activated graphite felt as a high-performance electrode for vanadium re-dox fow batteries. J Power Sources, 341, 270 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.004.
  12. Lee KM, Lee SE, Lee YS. Improved mechanical and electromag- netic interference shielding properties of epoxy composites through the introduction of oxyfuorinated multiwalled carbon nano-tubes. J Ind Eng Chem, 56, 435 (2017). https://doi.org/10.1016/j.jiec.2017.08.001.
  13. Hany P, Yazami R, Hamwi A. Low-temperature carbon fuoride for high power density lithium primary batteries. J Power Sources, 68, 708 (1997). https://doi.org/10.1016/S0378-7753(97)02642-6.
  14. Nakajima T. Fluorine-Carbon and Fluoride-Carbon Materials: Chemistry, Physics, and Applications, CRC Press, Boston (1991).
  15. Watanabe N, Shibuya A. Reaction of fuorine and carbons, and properties of their compounds. Kogyo Kagaku Zasshi, 71, 963 (1968). https://doi.org/10.1246/nikkashi1898.71.7_963.
  16. Takashima M, Watanabe N. Formation and structure of crystalline graphite fuoride. Nippon Kagaku Kaishi, 3, 432 (1975).
  17. Watanabe N, Koyama S, Imoto H. Thermal decomposition of graphite fuoride. I. Decomposition products of graphite fuoride, (CF)n in a vacuum. Bull Chem Soc Jpn, 53, 2731 (1980). https://doi.org/10.1246/bcsj.53.2731.
  18. Watanabe N, Koyama S. Thermal decomposition of graphite fuo- ride. II. Kinetics of thermal decomposition of (CF)n in a vacuum. Bull Chem Soc Jpn, 53, 3093 (1980). https://doi.org/10.1246/ bcsj.53.3093.
  19. Watanabe N, Kawamura T, Koyama S. Thermal decomposition of graphite fuoride. III. thermal decomposition of (CF)n in oxy- gen atmosphere. Bull Chem Soc Jpn, 53, 3100 (1980). https://doi.org/10.1246/bcsj.53.3100.
  20. Hamwi A, Daoud M, Cousseins JC. Graphite fuoride prepared at room temperature: 1. Synthesis and characterization. Synth Met, 26, 89 (1988). https://doi.org/10.1016/0379-6779(88)90338-4.
  21. Sato Y, Hagiwara R, Ito Y. Thermal decomposition of 1st stage fuorine-graphite intercalation compounds. J Fluorine Chem, 110, 31 (2001). https://doi.org/10.1016/S0022-1139(01)00397-9.
  22. Farooq U, Doh CH, Pervez SA, Kim DH, Lee SH, Saleem M, Sim SJ, Choi JH. Rate-capability response of graphite anode materials in advanced energy storage systems: a structural comparison. Carbon Lett, 17, 39 (2016). https://doi.org/10.5714/CL.2016.17.1.039.
  23. Girgis BS, Temerk YM, Gadelrab MM, Abdullah ID. X-ray dif- fraction patterns of activated carbons prepared under various conditions. Carbon Lett, 8, 95 (2007). https://doi.org/10.5714/ cl.2007.8.2.095.
  24. Rozen S, Brand M. Direct addition of elemental fuorine to dou- ble bonds. J Org Chem, 51, 3607 (1986). https://doi.org/10.1021/ jo00369a011.
  25. Miller WT Jr, Koch SD Jr, McLafferty FW. The mechanism of fuorination. II. Free radical initiation reactions: fuorine-sensitized chlorination and oxidation. J Am Chem Soc, 78, 4992 (1956). https://doi.org/10.1021/ja01600a050.