References
- Adguhut M, Bhupendra SB, Ankita S. An analysis of deformation and energy adsorption modes of shear thickening fuid treated Kev- lar fabrics as soft body armour materials. Mater Design, 51, 148 (2013). https://doi.org/10.1016/j.matdes.2013.04.016
- Yang HH. Kevlar Aramid Fiber. New York: John Wiley & Sons; 1993.
- Dotson NA, Galvan R, Laurence R, Tirrell M. Polymerization Process Modeling. New York: John Wiley & Sons; 1995.
- Reis PNB, Ferreira JAM, Santos P, Richardson MOW, Santos JB. Impact response of Kevlar composites with flled epoxy matrix. Compos Struc, 94, 3520 (2012). https://doi.org/10.1016/j.compstruct.2012.05.025
- Reis PNB, Ferreira JAM, Zhang ZY, Benameur T, Richardson MOW. Impact response of Kevlar composites with nanoclay enhanced epoxy matrix. Composites: Part B, 46, 7 (2013). https://doi.org/10.1016/j.compositesb.2012.10.028
- Bazhenov S. Dissipation of energy by bulletproof aramid fabric. J Mater Sci, 32, 4167 (1997). https://doi.org/10.1023/A:1018674528993
-
Kirkwood KM, Kirkwood JE, Lee YS, Egres RG, Wagner NJ. Yarn pull-out as a mechanism for dissipating ballistic impact energy in
$Kevlar^{(R)}$ KM-2 fabric: Part I: quasi-static characterization of yarn pull-out. Textile Res J, 74, 920 (2004). https://doi.org/10.1177/004051750407401012 -
Kirkwood JE, Kirkwood KM, Lee YS, Egres RG, Wagner NJ, Wetzel ED. Yarn pull-out as a mechanism for dissipating ballistic impact energy in
$Kevlar^{(R)}$ KM-2 fabric: Part II: predicting ballistic performance. Textile Res J, 74, 939 (2004). https://doi.org/10.1177/004051750407401101 - Dong Z, Sun CT. Testing and modeling of yarn pull-out in plain woven Kevlar fabrics. Composite: Part A, 40, 1863 (2009). https://doi.org/10.1016/j.compositesa.2009.04.019
- Sun XK, Zhao WM. Prediction of stiffness and strength of single- walled carbon nanotubes by molecular-mechanics based fnite ele- ment approach, Mater Sci Eng: A, 390, 366 (2005). https://doi.org/10.1016/j.msea.2004.08.020
- Unger E, Graham A, Kreupl F, Liebau M, Hoenlein W. Electron-chemical functionalization of multi-walled carbon nanotubes for solvation and purifcation. Current Appl Phys, 2, 107 (2002). https://doi.org/10.1016/S1567-1739(01)00072-4
- Kwon Y, Shim W. Jeon SY, Youk JH, Yu WR. Improving dispersion of multi-walled carbon nanotubes and graphene using a common non-covalent modifer. Carbon Lett, 20, 53 (2016). https://doi.org/10.5714/CL.2016.20.053
- Shen J, Huang W, Wu L, Hu Y, Ye M. The reinforcement role of different amina-functionalized multi-walled carbon nanotubes in epoxy nanocomposites. Compos Sci Technol, 67, 3041 (2007). https://doi.org/10.1016/j.compscitech.2007.04.025
- Roh SC, Choi EY, Choi YS, Kim CK. Characterization of the surface energies of functionalized multi-walled carbon nanotubes and their interfacial adhesion energies with various polymers Polymer, 55, 1527 (2014). https://doi.org/10.1016/j.polymer.2014.02.015
- Davis DC, Wilkerson JW, Zhu J, Hadjiev VG. A strategy for improving mechanical properties of a fber reinforced epoxy composite using functionalized carbon nanotubes. Compos Sci Technol, 71, 1089 (2011). https://doi.org/10.1016/j.compscitech.2011.03.014
- Saeed K, Ibrahim. Carbon nanotubes-properties and applications: a review. Carbon Lett, 14, 131 (2013) https://doi.org/10.5714/CL.2013.14.3.131
- Nikonova EA, Pakshver AB. The friction properties of textile yarns. Fibre Chem, 4, 657 (1973). https://doi.org/10.1007/BF00545607