Browse > Article
http://dx.doi.org/10.5714/CL.2018.26.107

The synergetic effect of phenolic anchoring and multi-walled carbon nanotubes on the yarn pull-out force of para-aramid fabrics at high speed  

Cheon, Jinsil (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Yoon, Byung Il (DACC Carbon, Co., Ltd)
Cho, Donghwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Carbon letters / v.26, no., 2018 , pp. 107-111 More about this Journal
Keywords
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Adguhut M, Bhupendra SB, Ankita S. An analysis of deformation and energy adsorption modes of shear thickening fuid treated Kev- lar fabrics as soft body armour materials. Mater Design, 51, 148 (2013).   DOI
2 Yang HH. Kevlar Aramid Fiber. New York: John Wiley & Sons; 1993.
3 Dotson NA, Galvan R, Laurence R, Tirrell M. Polymerization Process Modeling. New York: John Wiley & Sons; 1995.
4 Reis PNB, Ferreira JAM, Santos P, Richardson MOW, Santos JB. Impact response of Kevlar composites with flled epoxy matrix. Compos Struc, 94, 3520 (2012).   DOI
5 Reis PNB, Ferreira JAM, Zhang ZY, Benameur T, Richardson MOW. Impact response of Kevlar composites with nanoclay enhanced epoxy matrix. Composites: Part B, 46, 7 (2013).   DOI
6 Bazhenov S. Dissipation of energy by bulletproof aramid fabric. J Mater Sci, 32, 4167 (1997).   DOI
7 Kirkwood KM, Kirkwood JE, Lee YS, Egres RG, Wagner NJ. Yarn pull-out as a mechanism for dissipating ballistic impact energy in $Kevlar^{(R)}$ KM-2 fabric: Part I: quasi-static characterization of yarn pull-out. Textile Res J, 74, 920 (2004).   DOI
8 Kirkwood JE, Kirkwood KM, Lee YS, Egres RG, Wagner NJ, Wetzel ED. Yarn pull-out as a mechanism for dissipating ballistic impact energy in $Kevlar^{(R)}$ KM-2 fabric: Part II: predicting ballistic performance. Textile Res J, 74, 939 (2004).   DOI
9 Dong Z, Sun CT. Testing and modeling of yarn pull-out in plain woven Kevlar fabrics. Composite: Part A, 40, 1863 (2009).   DOI
10 Sun XK, Zhao WM. Prediction of stiffness and strength of single- walled carbon nanotubes by molecular-mechanics based fnite ele- ment approach, Mater Sci Eng: A, 390, 366 (2005).   DOI
11 Nikonova EA, Pakshver AB. The friction properties of textile yarns. Fibre Chem, 4, 657 (1973).   DOI
12 Kwon Y, Shim W. Jeon SY, Youk JH, Yu WR. Improving dispersion of multi-walled carbon nanotubes and graphene using a common non-covalent modifer. Carbon Lett, 20, 53 (2016).   DOI
13 Shen J, Huang W, Wu L, Hu Y, Ye M. The reinforcement role of different amina-functionalized multi-walled carbon nanotubes in epoxy nanocomposites. Compos Sci Technol, 67, 3041 (2007).   DOI
14 Roh SC, Choi EY, Choi YS, Kim CK. Characterization of the surface energies of functionalized multi-walled carbon nanotubes and their interfacial adhesion energies with various polymers Polymer, 55, 1527 (2014).   DOI
15 Davis DC, Wilkerson JW, Zhu J, Hadjiev VG. A strategy for improving mechanical properties of a fber reinforced epoxy composite using functionalized carbon nanotubes. Compos Sci Technol, 71, 1089 (2011).   DOI
16 Saeed K, Ibrahim. Carbon nanotubes-properties and applications: a review. Carbon Lett, 14, 131 (2013)   DOI
17 Unger E, Graham A, Kreupl F, Liebau M, Hoenlein W. Electron-chemical functionalization of multi-walled carbon nanotubes for solvation and purifcation. Current Appl Phys, 2, 107 (2002).   DOI