DOI QR코드

DOI QR Code

Evaluation on Geological Structures to Secure Long-term Safety of Nuclear Facility Sites

원자력시설물 부지의 장기적 안전성 확보를 위한 지질구조 평가

  • Jin, Kwangmin (Climate Change Mitigation and Sustainability Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Young-Seog (Department of Earth & Environmental Sciences, Environmental and Marine Sciences and Technology, Pukyong National University)
  • 진광민 (한국지질자원연구원 전략기술연구본부) ;
  • 김영석 (부경대학교 환경해양대학 지구환경과학과)
  • Received : 2018.03.12
  • Accepted : 2018.04.06
  • Published : 2018.04.28

Abstract

Many large earthquakes have continuously been reported and resulted in significant human casualties and extensive damages to properties globally. The accident of Fukushima nuclear power plant in Japan was caused by a mega-tsunami, which is a secondary effect associated with the Tohoku large earthquake (M=9.0, 2011. 3. 11.). Most earthquakes occur by reactivation of pre-existing active faults. Therefore, the importance of paleoseismological study have greatly been increased. The Korean peninsula has generally been considered to be a tectonically stable region compared with neighboring countries such as Japan and Taiwan, because it is located on the margin of the Eurasian intra-continental region. However, the recent earthquakes in Gyeongju and Pohang have brought considerable insecurity on earthquake hazard. In particular, this region should be secure against earthquake, because many nuclear facilties and large industrial facilities are located in this area. However, some large earthquakes have been reported in historic documents and also several active faults have been reported in southeast Korea. This study explains the evaluation methods of geological structures on active fault, fault damage zone, the relationship between earthquake and active fault, and respect distance. This study can contribute to selection of safe locations for nuclear facilities and to earthquake hazards and disaster prevention.

전 세계적으로 대규모 지진의 발생과 이로 인한 인명피해와 재산피해는 끊임없이 발생하고 있다. 특히 일본의 동일본 대지진(M=9.0; 2011. 3. 11.)은 이로 인한 쓰나미의 발생으로 상당한 인명피해와 경제적 손실을 가져왔고, 후쿠시마 원전사고를 유발하였다. 대부분의 지진은 기존 활성단층들의 재활성에 의해 발생한다. 따라서 활성단층에 의한 지진의 재발특성을 이해하기 위한 고지진학적 연구가 활발히 수행되고 있다. 우리나라는 유라시아판 내부에 위치하여 이웃한 일본이나 대만과 같은 나라들에 비해 지진으로부터 안전지대로 여겨져 왔다. 그러나 최근 경주지진(M=5.8; 2016. 9. 12.)과 포항지진(M=5.4; 2017, 11. 15.)으로 인해 우리나라에서도 지진재해에 대한 불안감이 증가하고 있다. 특히 이 지역은 많은 원자력관련 시설물들과 대규모 산업단지가 밀집되어 있는 지역들로 지진재해로부터 극도의 안전성이 확보되어야 한다. 그러나 한반도 남동부의 경우 대규모 지진들이 제4기뿐만 아니라 역사시대에도 자주 발생한 것으로 보고되고 있다. 따라서 지진에 의한 피해를 줄이기 위해서는 활성단층을 추적하고, 활성단층을 따른 지표파열의 특성을 파악하여 해당지역에서의 지진과 단층의 거동특성을 이해하는 것이 중요하다. 이 연구에서는 극도의 안전성 확보가 필요한 원자력관련시설물들의 부지 선정을 위한 활성단층, 단층손상대, 지진과 활성단층의 상관성, 그리고 이격거리 등의 구조지질학적 평가방법을 설명하고, 이를 통해 안전한 원자력관련 시설물의 부지선정뿐만 아니라 지진재해와 방재에 유용한 정보를 제공하고자 한다.

Keywords

References

  1. Abrahamson, N.A. and Somerville, P.G. (1996) Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake. Bulletin of the Seismological Society of America, v.86, p.S93-S99.
  2. Ambraseys, N.N. (2006) Earthquakes and archaeology. Journal of Archaeological Science, v.33, p.1008-1016. https://doi.org/10.1016/j.jas.2005.11.006
  3. Berg, S.S. and Skar, T. (2005) Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah. Journal of Structural Geology, v.27, p.1803-1822. https://doi.org/10.1016/j.jsg.2005.04.012
  4. Brogi, A. (2008) Fault zone architecture and permeability features in siliceous sedimentary rocks: Insights from the Rapolano geothermal area (Northern Apennines, Italy). Journal of Structural Geology, v.30, p.237-256. https://doi.org/10.1016/j.jsg.2007.10.004
  5. Chang, T.W. (2001) Quaternary tectonic activity at the Eastern Block of the Ulsan Fault. Journal of the Geological Society of Korea, v.37, p.431-444 (in Korean with English abstract).
  6. Chester, F.M., Evans, J.P. and Biegel, R.L. (1993) Internal structure and weakening mechanisms of the San Andreas Fault. Journal of Geophysical Research, v.98 (B1), p.771-786. https://doi.org/10.1029/92JB01866
  7. Choi, J.-H., Yang, S.-J. and Kim, Y.-S. (2009) Fault zone classification and structural characteristics of the southern Yangsan fault in the Sangcheon-ri area, SE Korea. Journal of the Geological Society of Korea, v.45(1), p.9-28 (in Korean with English abstract).
  8. Choi, J.-H., Edwards, P., Ko, K. and Kim, Y.-S. (2016) Definition and classification of fault damage zones: A review and a new methodological approach. Earth- Science Reviews, v.152, p.70-87. https://doi.org/10.1016/j.earscirev.2015.11.006
  9. Choi, J.-H., Kim, Y.-S. and Klinger, Y. (2017) Recent progress in studies on the characteristics of surface rupture associated with large earthquake. Journal of the Geological Society of Korea, v.53, p.129-157. https://doi.org/10.14770/jgsk.2017.53.1.129
  10. Das, S. and Henry, C. (2003) Spatial relation between main earthquake slip and its aftershock distribution. Reviews of Geophysics, v.41(3), p.1013. https://doi.org/10.1029/2002RG000119
  11. Du, Y. and Aydin, A. (1995) Shear fracture patterns and connectivity at geometric complexities along strikeslip faults. Journal of Geophysical Research, v.100, p.18093-18102. https://doi.org/10.1029/95JB01574
  12. Han, S.-R., Park, J.Y. and Kim, Y.-S. (2009) Evolution modeling of the Yangsan-Ulsan fault system with stress changes. Journal of the Geological Society of Korea, v.45, p.361-377 (in Korean with English abstract).
  13. Harris, S.D., Vaszi, A.Z. and Knipe, R.J. (2007) Threedimensional upscaling of fault damage zones for reservoir simulation. Geological Society of London, Special Publications, v.292, p.353-374. https://doi.org/10.1144/SP292.20
  14. Hwang, H.Y. (2000) Taiwan Chi-Chi earthquake 9.21.99. Bird's eye view of Cher-Lung-Pu fault. Flying Tiger Cultural Publ. Taipei, Taiwan, 435p.
  15. Hyndman, D. and Hyndman, D. (2006) Natural Hazard and Disaster. Thomson Learning, 533p.
  16. Jin, K., Lee, M. and Kim, Y.-S. (2009) Geological study on the collapse of a carved stone Buddha statue in Yeolam valley of Namsan, Gyeongju, Korea. Journal of the Geological Society of Korea, v.45, p.235-247 (in Korean with English abstract).
  17. Jin, K. and Kim, Y.-S. (2010) Review and new interpretation for the propagation characteristics associated with the 1999 Chi-Chi earthquake faulting event. Island Arc, v.19, p.659-675. https://doi.org/10.1111/j.1440-1738.2010.00740.x
  18. Jin, K., Lee, M., Kim, Y.-S. and Choi, J.-H. (2011) Archaeoseismological studies on historical heritages sites in the Gyeongju area, SE Korea. Quaternary International, v.242, p.158-170. https://doi.org/10.1016/j.quaint.2011.03.055
  19. Jin, K., Kim, Y.-S., Yang, S.-J., Choi, J.-H. and Kim, K.-O. (2018) Deformation history and characteristics of the Ilgwang Fault in Southeast Korea. Geosciences Journal, v.22, p.209-226. https://doi.org/10.1007/s12303-017-0037-1
  20. Johnson, C.E. and Hutton, L.K. (1982) Aftershocks and pre-earthquake seismicity, the Imperial Valley, California, earthquake, October 15, 1979. USGS 1254, 59-76.
  21. Karcz, I., Kafri, U. and Meshel, Z. (1977) Archaeological evidence for Subrecent seismic activity along the Dead Sea-Jordan Rift, Nature, v.269, p.234-235. https://doi.org/10.1038/269234a0
  22. Kee, W.-S., Kim, B.C., Hwang, J.H., Song, K.-Y. and Khim, Y.-H. (2007) Structural characteristics of Quaternary reverse faulting of the Eupcheon Fault, SE Korea. Journal of the Geological Society of Korea, v.43, p.311-333.
  23. Kee, W.-S., Kihm, Y.H., Lee, H., Cho, D.L., Kim, B.C., Song, K.-Y., Koh, H.J., Lee, S.R., Yeon, Y.-K., Hwang, S., Park, K,G. and Seong, N.-H. (2009) Evaluation and database construction of Quaternary faults in SE Korea. Korea Institute of Geoscience and Mineral Resources IP2006-047-2009(1), 327p. (in Korean).
  24. Kim, Y.-S. and Sanderson, D.J. (2005) The relationship between displacement and length of faults: a review. Earth-Science Reviews, v.68, p.317-334. https://doi.org/10.1016/j.earscirev.2004.06.003
  25. Kim, Y.-S. and Sanderson, D.J. (2008) Earthquake and fault propagation, displacement and damage zones. In: Landowe, S.J., Hammler, G.M. (eds.), Structural Geology: New Research. Nova Sciences, Hauppauge, New York, 99-117.
  26. Kim, Y.-S. and Sanderson, D.J. (2010) Inferred fluid flow through fault damage zones based on the observation of stalactites in carbonate caves. Journal of Structural Geology, v.32, p.1305-1316. https://doi.org/10.1016/j.jsg.2009.04.017
  27. Kim, Y.-S., Jin, K., Choi, W.-H. and Kee W-S. (2011) Understanding of active faults: A review for recent researches. Journal of the Geological Society of Korea, v.47, p.723-752 (in Korean with English abstract).
  28. Kim, Y.-S., Peacock, D.C.P. and Sanderson, D.J. (2003) Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, v.25, p.793-812. https://doi.org/10.1016/S0191-8141(02)00200-6
  29. Kim, Y.-S., Park, J.Y., Kim, J.H., Shin, H.J. and Sanderson, D.J. (2004a) Thrust geometries in unconsolidated Quaternary sediments and evolution of the Eupchon Fault, southeast Korea. The Island Arc, v.13, p.403-415. https://doi.org/10.1111/j.1440-1738.2004.00435.x
  30. Kim, Y.-S., Peacock, D.C.P. and Sanderson, D.J. (2004b) The fault damage zones. Journal of Structural Geology, v.26, p.503-517. https://doi.org/10.1016/j.jsg.2003.08.002
  31. King, G.C.P., Stein, R.S. and Lin, J. (1994) Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, v.84(3), p.935-953.
  32. King, G.C. and Nabelek, J. (1985) The role of fault bends in faults in the initiation and termination of earthquake rupture. Science, v.228, p.984-987. https://doi.org/10.1126/science.228.4702.984
  33. Korea Power Engineering Company (KOPEC) (2002). The preliminary site assessment report (PSAR) for the new Weolsung reactors 1 and 2. (unpublished report) 251-281 (in Korean).
  34. Klinger, Y. (2010) Relation between continental strikeslip earthquake segmentation and thickness of the crust. Journal of Geophysical Research, v.115, p.B07306.
  35. Kyung, J.B. (1997) Paleoseismological study on the Midnorthern part of the Ulsan Fault by trench method. Jour. Eng. Geology, v.7, n.1, p.81-90.
  36. Kyung, J.B. (2003) Paleoseismology of the Yangsan fault, southeastern part of the Korean peninsula, Annals of Geophysics, v.46, p.983-996.
  37. Kyung, J.B. and Chang, T.W. (2001) The Latest Fault Movement on the Northern Yangsan Faultt Zone around the Yugye-Ri Area, Southeast Korea. Journal of the Geological Society of Korea, v.37, p.563-577 (in Korean with English abstract).
  38. Kyung, J.B. and Lee, K. (2006) Active fault study of the Yangsan Fault System and Ulsan Fault System, southeastern part of the Korean Peninsula. Journal of Korean Geophysical Society, v.9, p.219-230.
  39. Leckenby, R.J., Sanderson, D.J. and Lonergan, L. (2005) Estimating flow heterogeneity in natural fracture systems. Journal of Volcanology and Geothermal Research, v.148, p.116-129. https://doi.org/10.1016/j.jvolgeores.2005.03.017
  40. Lee, K. and Na, S.H. (1983) A study of microearthquake activity of the Yangsan fault. Journal of Geological Society of Korea 19, 127-135 (in Korean with English abstract).
  41. Lee, K. (1998) Historical earthquake data of Korea. Journal of the Korean Geophysical Society 1, 3-22 (in Korean with English abstract).
  42. Manepally, C., Fedors, R., Basagaoglu, H., Ofoegbu, G., and Pabalan, R. (2011) Coupled processes workshop report. U.S. Nuclear Regulatory Commission Contract NRC-02-07-006.
  43. Manighetti, I., Campillo, M., Sammis, C., Mai, P.M. and King, G. (2005) Evidence for self-similar, triangular slip distributions on earthquakes: Implications for earthquake and fault mechanics. Journal of Geophysical Research, v.110, p.B05302.
  44. McCalpin, J.P. (2009) Paleoseismology: 2nd ed. Academic Press, San Diego, 613p.
  45. Micklethwaite, S. and Cox, S.F. (2004) Fault-segment rupture, aftershock-zone fluid flow, and mineralization. Geology, v.32, p.813-816. https://doi.org/10.1130/G20559.1
  46. Micklethwaite, S. and Cox, S.F. (2006) Progressive fault triggering and fluid flow in aftershock domains: Examples from mineralized Archaean fault systems. Earth and Planetary Science Letters, v.250, p.318-330. https://doi.org/10.1016/j.epsl.2006.07.050
  47. Ministry of Trade, Industry and Energy (2015) Nuclear power generation. Human culture arirang. 243-245.
  48. Munier, R. and Hokmark, H. (2004) Respect distaces. Rationale and means of computation. R-report SKB R-04-17. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management Company.
  49. National Emergency Management Agency (2012) Active Fault Map and Seismic Hazard Map. NEMA-Nature-2009-24, 899p.
  50. Okada, A., Watanabe, M., Sato, H., Jun, M.S., Jo, W.R., Kim, S.K., Jeon, J.S., Chi, H.C. and Oike, K. (1994) Active fault topography and trench survey in the central part of the Yangsan fault, southeast Korea. Journal of Geography, v.103, p.111-126 (in Japanese). https://doi.org/10.5026/jgeography.103.2_111
  51. Okada, A., Watanabe, M., Suzuki, Y., Kyung, J. B., Jo, W. R., Kim, S. K. and Oike, K. (1995) Active fault topography and fault outcrops in the central part of the Ulsan fault system, southeast Korea. Proceeding of 1995 Japan Earth and Planetary Science Joint Meeting(abstract).
  52. Okada, A., Watanabe, M., Suzuki, Y., Kyung, J. B., Jo, W. R., Kim, S. K., Oike, K. and Makamura, T. (1998) Active fault topography and fault outcrops in the central part of the Ulsan fault system, southeast Korea. Joural of Geography, v.107, p.644-658.(in Japanese). https://doi.org/10.5026/jgeography.107.5_644
  53. Ota, Y., Chen, Y.-G. and Chen, W.-S. (2005). Review of paleoseismological and active fault studies in Taiwan in the light of the Chichi earthquake of September 21, 1999. Tectonophysics, v.408, p.63-77. https://doi.org/10.1016/j.tecto.2005.05.040
  54. Perfettini, H. and Avouac, J.-P. (2007) Modeling afterslip and aftershocks following the 1992 Landers earthquake. Journal of Geophysical Research, v.112, p.B07409.
  55. Reilinger, R.E., Ergintav, S., Bürgmann, R., McClusky, S., Lenk, O., Barka, A., Gurkan, O., Hearn, L., Feigi, K.L., Cakmak, R., Aktug, B., Ozener, H. and Toksoz, M.N. (2000) Coseismic and Postseismic Fault Slip for the 17 August 1999, M=7.5, Izmit, Turkey Earthquake. Science, v.289, p.1519-1524. https://doi.org/10.1126/science.289.5484.1519
  56. Riley, P.R., Goodwin, L.B. and Lewis, C.J. (2010) Controls on fault damage zone width, structure, and symmetry in the Bandelier Tuff, New Mexico. Journal of Structural Geology, v.32, p.766-780. https://doi.org/10.1016/j.jsg.2010.05.005
  57. Sanderson, D.J. and Zhang, D. (1999) Critical stress localization of flow associated with deformation of well-fractured rock masses, with implications for mineral deposits. In: McCaffrey, K.J.W., Lonergan, L., Wilkinson, J.J. (Eds.), Fractures, Fluid Flow and Mineralisation. Special Publications, Vol. 155. Geological Society, London, 69-81.
  58. Scholz, C. (2002) The Mechanics of Earthquakes and Faulting: 2nd ed. Cambridge University Press, Cambridge, 470p.
  59. Segall, P. and Pollard, D.D. (1983) Nucleation and growth of strike-slip faults in granite. Journal of Geophysical Research, v.88, p.555-568. https://doi.org/10.1029/JB088iB01p00555
  60. Sibson, R.H. (1989) Earthquake faulting as a structural process. Journal of Structural Geology, v.11(1-2), p.1-14. https://doi.org/10.1016/0191-8141(89)90032-1
  61. Sibson, R.H. (2003) Thickness of the seismic slip zone. Bulletin of the Seismological Society of America, v.93(3), p.1169-1178. https://doi.org/10.1785/0120020061
  62. Smith-Konter, B.R., Sandwell, D.T. and Shearer, P. (2011) Locking depths estimated from geodesy and seismology along the San Andreas Fault System: Implications for seismic moment release. Journal of Geophysical Research, 116(B6).
  63. Soliva, R., Benedicto, A., Schultz, R.A., Maerten, L. and Micarellie, L. (2008) Displacement and interaction of normal fault segments branched at depth: Implications for fault growth and potential earthquake rupture size. Journal of Structural Geology, v.30(10), p.1288-1299. https://doi.org/10.1016/j.jsg.2008.07.005
  64. Stein, R.S., Barka, A.A. and Dieterich, J.H. (1997) Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal of International, v.128, p.594-604. https://doi.org/10.1111/j.1365-246X.1997.tb05321.x
  65. Thomas, M.Y., Avouac, J.-P., Gratier, J.-P. and Lee, J.-C. (2014) Lithological control on the deformation mechanism and the mode of fault slip on the Longitudinal Valley Fault, Taiwan. Tectonophysics, v.632, p.48-63. https://doi.org/10.1016/j.tecto.2014.05.038
  66. Wesnousky, S.G. (2008) Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture. Bulletin of the Seismological Society of America, v.98, p.1609-1632. https://doi.org/10.1785/0120070111
  67. Yagi, Y. and Fukahata, Y. (2011) Rupture process of the 2011 Tohoku-oki earthquake and absolute elastic strain release. Geophys. Res. Lett., v.38, p.L19307.
  68. Yu, Y.-X. and Gao, M.-T. (2001) Effects of the hanging wall and footwall on peak acceleration during the Jiji (Chi-Chi) earthquake, Taiwan Province. Acta Seismologica Sinica, v.14, p.654-659. https://doi.org/10.1007/BF02718076
  69. Zhang, Y., Schaubs, P.M., Zhao, C., Ord, A., Hobbs, B.E. and Barnicoat, A.C. (2008) Fault-related dilation, permeability enhancement, fluid flow and mineral precipitation patterns: numerical models. In: Wibberley, C.A.J., Kurz, W., Imber, J., Holdsworth, R.E., Collettini, C. (Eds.), The Internal Structure of Fault Zones: Implications for Mechanical and Fluid-Flow Properties. Special Publications, Vol. 299. Geological Society, London, pp. 239-255.