• Title/Summary/Keyword: earthquake hazard

Search Result 389, Processing Time 0.023 seconds

The present state of earthquake hazard for the apartment structures in Korea (국내 공동주택의 지진위험도 현황에 관한 연구)

  • Kim, Hyeon-Jin;Park, Tae-Won;Jeong, Ran
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.49
    • /
    • pp.92-102
    • /
    • 2009
  • Earthquake is one of the hazard so hard because it is difficult predicted occurred time, scale and characters. Due to a recent Sichuan earthquake in China with a magnitude of 7.8, it is worried about having a major earthquake in Korea peninsula in near future. The earthquake in Kobe, Japan showed that the damages were concentrated on the buildings which were not considered to be protected from the earthquakes. In this study, apartment structures in Korea analyze about earthquake hazard and evaluate seismic performance. Through the this study we have notice of earthquake hazard for apartment structures which live a lot of population of Korea and suppose necessary for seismic retrofit.

  • PDF

The Present State of Earthquake Hazard for the Apartment Structures in Korea (국내 공동주택의 지진위험도 현황에 관한 연구)

  • Kim, Hyeon-Jin;Park, Tae-Won;Chung, Lan
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.100-107
    • /
    • 2008
  • Earthquake is one of the hazard so hard because it is difficult predicted occurred time, scale and characters. Due to a recent Sichuan earthquake in China with a magnitude of 7.8, it is worried about having a major earthquake in Korea peninsula in near future. The earthquake in Kobe, Japan showed that the damages were concentrated on the buildings which were not considered to be protected from the earthquakes. In this study, apartment structures in Korea analyze about earthquake hazard and evaluate seismic performance. Through the this study we have notice of earthquake hazard for apartment structures which live a lot of population of Korea and suppose necessary for seismic retrofit.

Seismic Landslide Hazard Maps in Ul-Ju Ul-san Korea (지진에 대한 사면의 재해위험지도 작성 - 울산시 울주군 지역을 중심으로-)

  • 조성원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.89-96
    • /
    • 2000
  • Landslide damage comprise most part of the damages from the earthquake and it only causes the damage to lives and structures directly but also cease the operation of social system by road or lifeline failure. For these reasons hazard assesment on the landslides has been recognized very important. And hazard maps have been used to visualize the hazard of the landslide. In this study as first step for application of hazard map to domestic cases hazard maps are made for the Ul-Joo Ul-san Korea, Where the Yan-san faults are located. For building hazard maps the degree of hazard are evaluated based on Newmark displacement and the resulting maps are constructed by GIS technique. In hazard assesment maximum ground acceleration obtained from attenuation equation of wave propagation and design earthquake acceleration suggested by Ministry of construction are used for acceleration term. Hazard maps are made by GIS programs Arc/Info and Arc/View based on the digital maps and data from lab tests and elastic wave surveys The maps show the possible landslide regions significantly and the displacements of slide are proportional to the slope angles.

  • PDF

CURRENT STATUS AND IMPORTANT ISSUES ON SEISMIC HAZARD EVALUATION METHODOLOGY IN JAPAN

  • Ebisawa, Katsumi
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1223-1234
    • /
    • 2009
  • The outlines of seismic PSA implementation standards and seismic hazard evaluation procedure were shown. An overview of the cause investigation of seismic motion amplification on the Niigata-ken Chuetsu-oki (NCO) earthquake was also shown. Then, the contents for improving the seismic hazard evaluation methodology based on the lessons learned from the NCO earthquake were described. (1) It is very important to recognize the effectiveness of a fault model on the detail seismic hazard evaluation for the near seismic source through the cause investigation of the NCO earthquake. (2) In order to perform and proceed with a seismic hazard evaluation, the Japan Nuclear Energy Safety Organization has proposed the framework of the open deliberation rule regarding the treatment of uncertainty which was made so as to be able to utilize a logic tree. (3) The b-value evaluation on the "Stress concentrating zone," which is a high seismic activity around the NCO hypocenter area, should be modified based on the Gutenberg-Richter equation.

Construction of Earthquake Disaster Management System Based on Seismic Performance Evaluation of Architectural Structure (건축물 내진성능평가에 의한 지진재해관리정보체계 구축)

  • Kim, Seong-Sam;Cho, Eun-Rae;Yoon, Jeong-Bae;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.59-67
    • /
    • 2007
  • This paper proposes potentialities of constructing the information system for earthquake hazard management which can manage and analyse earthquake risk and hazard systematically. The experimental results as well as architectural structure investment data for seismicity assessment are built in database and connected with GIS for assessing earthquake safety of building in urban area. For earthquake-resistant performance assessment, we collected and classified building structural data according to assessment criteria using building register, architectural map, digital map, and then complemented database with field survey data. We also suggest GIS-based information system can cope with and manage earthquake hazard effectively, as evaluating earthquake risk by performing detailed earthquake-resistant assessment and determining final assessment scores. The assessment should be processed quickly and accurately by integrating the earthquake hazard information management system with modularization of assessment procedure and method in the future.

  • PDF

Selection of Presentable Seismic Ground Motion Scenario through Deaggregation (Deaggregation을 통한 대표지진시나리오 선정)

  • Kwak, Dong-Yeop;Yun, Se-Ung;Park, Du-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.261-263
    • /
    • 2008
  • Determining the most likelihood earthquake scenario in one region is very important for performing an earthquake-resistant design. The most likelihood earthquake scenario can be selected by performing deaggregation, who classifies earthquakes that occur ground motion exceeding a specific acceleration as each distance and each earthquake magnitude. If earthquakes are classified, the most likelihood earthquake scenario can be selected. Earthquake hazard analysis method that have to be performed before deaggregation follows the method that Ministry of Construction & Transportation presented. As a result of performing deaggregation at longitude 127.35 and latitude 34.7, presentable seismic ground motion scenarios can be selected at each recurrence period.

  • PDF

Probabilistic Seismic Hazard Analysis of Caisson-Type Breakwaters (케이슨 방파제의 확률론적 지진재해도 평가)

  • KIM SANG-HOON;KIM DOO-KIE
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.26-32
    • /
    • 2005
  • Recent earthquakes, measuring over a magnitude of 5.0, on the eastern coast of Korea, have aroused interest in earthquake analyses and the seismic design of caisson-type breakwaters. Most earthquake analysis methods, such as equivalent static analysis, response spectrum analysis, nonlinear analysis, and capacity analysis, are deterministic and have been used for seismic design and performance evaluation of coastal structures. However, deterministic methods are difficult for reflecting on one of the most important characteristics of earthquakes, i.e. the uncertainty of earthquakes. This paper presents results of probabilistic seismic hazard assessment(PSHA) of an actual caisson-type breakwater, considering uncertainties of earthquake occurrences and soil properties. First, the seismic vulnerability of a structure and the seismic hazard of the site are evaluated, using earthquake sets and a seismic hazard map; then, the seismic risk of the structure is assessed.

Review on Probabilistic Seismic Hazard Analysis of Capable Faults (단층지진원 확률론적 지진재해도 분석에 관한 고찰)

  • 최원학;연관희;장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.28-35
    • /
    • 2002
  • The probabilistic seismic hazard analysis for engineering needs several active fault parameters as input data. Fault slip rates, the segmentation model for each fault, and the date of the most recent large earthquake in seismic hazard analysis are the critical pieces of information required to characterize behavior of the faults. Slip rates provide a basis for calculating earthquake recurrence intervals. Segmentation models define potential rupture lengths and are inputs to earthquake magnitude. The most recent event is used in time-dependent probability calculations. These data were assembled by expert source-characterization groups consisting of geologists, geophysicists, and seismologists evaluating the information available for earth fault. The procedures to prepare inputs for seismic hazard are illustrated with possible segmentation scenarios of capable fault models and the seismic hazards are evaluated to see the implication of considering capable faults models.

  • PDF

Earthquake hazard and risk assessment of a typical Natural Gas Combined Cycle Power Plant (NGCCPP) control building

  • A. Can Zulfikar;Seyhan Okuyan Akcan;Ali Yesilyurt;Murat Eroz;Tolga Cimili
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.581-591
    • /
    • 2023
  • North Anatolian Fault Zone is tectonically active with recent earthquakes (Mw7.6 1999-Kocaeli and Mw7.2 1999-Düzce earthquakes) and it passes through Marmara region, which is highly industrialized, densely populated and economically important part of Turkey. Many power plants, located in Marmara region, are exposed to high seismic hazard. In this study, open source OpenQuake software has been used for the probabilistic earthquake hazard analysis of Marmara region and risk assessment for the specified energy facility. The SHARE project seismic zonation model has been used in the analysis with the regional sources, NGA GMPEs and site model logic trees. The earthquake hazard results have been compared with the former and existing earthquake resistant design regulations in Turkey, TSC 2007 and TBSCD 2018. In the scope of the study, the seismic hazard assessment for a typical natural gas combined cycle power plant located in Marmara region has been achieved. The seismic risk assessment has been accomplished for a typical control building located in the power plant using obtained seismic hazard results. The structural and non-structural fragility functions and a consequence model have been used in the seismic risk assessment. Based on the seismic hazard level with a 2% probability of exceedance in 50 years, considered for especially these type of critical structures, the ratios of structural and non-structural loss to the total building cost were obtained as 8.8% and 45.7%, respectively. The results of the study enable the practical seismic risk assessment of the critical facility located on different regions.

A Case Study on the Seismic Hazard Classification of Domestic Drinking Water Earthfill Dams Using Zero Seismic Failure Probability Curve (지진파괴확률 영곡선 활용 국내 식수전용 흙댐의 지진 위험도 분류 사례 연구)

  • Ha, Ik-soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.173-180
    • /
    • 2022
  • Most of the drinking water dams managed by the local governments in Korea are earthfill dams, and these dams have almost no geotechnical property information necessary for seismic performance evaluation. Nevertheless, in the rough planning stage for improving seismic safety for these dams, it is necessary to classify their relative seismic hazard against earthquakes and conduct an additional ground investigation. The zero seismic failure probability curve is a curve suggested in this study in which the probability of failure due to an earthquake becomes '0' regardless of the geotechnical properties of the earthfill dam. By examining the method and procedure for calculating failure probability due to an earthquake suggested in previous researches, the zero seismic failure probability curves for an earthquake in 1,000-year and 2,400-year return periods in Korea were presented in the form of a hyperbola on the plane of the dam height versus freeboard ratio (ratio of freeboard to dam height), respectively. The distribution characteristics of the dam height and the freeboard ratio of 81 Korean earthfill dams were presented. The two proposed zero seismic failure probability curves are shown on the plane of the dam height versus freeboard ratio, and the relative seismic hazard of 81 dams can be classified into three groups using these curves as boundaries. This study presented the method of classifying the relative seismic hazard and the classification result.