References
- M. Sugawara, M. Kanazawa, K. Mitani & F. Okano. (2003. Oct). Ultrahigh-Definition Video System with 4000 Scanning Lines. SMPTE Motion Imaging Journal, 112, 339-346. https://doi.org/10.5594/J16304
- T. Blu, P. Thevenaz & M. Unser. (2004). Linear interpolation revitalized. IEEE Trans. on Image Processing, 13(5), 710-719. https://doi.org/10.1109/TIP.2004.826093
- R. G. Keys. (1981). Cubic convolution interpolation for digital image processing. IEEE Trans. on Acoust., Speech, Signal Process, ASSP-29(6), 1153-1160.
- W. C. Siu & K. W. Hung. (2012). Review of Image Interpolation and Super-resolution. IEEE conference. ieeexplore.ieee.org/document/6411957.
- D. H. Han. (2016). Design and Characteristics of 6-60 Lens for CCTV. Journal of Convergence Society for SMB, 6(3), 85-91.
- N. Crouseilles, T. Respanud & E. Sonnendrucker. (2009). A Forward semi-Lagrangian method for the numerical solution of the Vlasov equation. Computer Physics Communications, 180, 1730-1745. https://doi.org/10.1016/j.cpc.2009.04.024
- E. Sonnendrucker, J. Roche, P. Bertrand & A. Ghizzo. (1999). The semi-lagrangian method for the numerical resolution of the Vlasov equation. Journal of Computer Physics, 149, 201-220. https://doi.org/10.1006/jcph.1998.6148
- A. Staniforth & J. Cote. (1991). Semi-Lagrangian integration schemes for atmospheric models. A review Mon. Weather Rev. 119, 2206-2223. https://doi.org/10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2
- M. Zerroukat, N. Wood & A. Staniforth. (2005). A monotonic and positive-definite filter for a Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme. Q. J. R. Meteorol. Soc. 131, 2923-2936. https://doi.org/10.1256/qj.04.97
- G.. S. Jiang & C.-W. Shu. (1996). Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126, 202-228. https://doi.org/10.1006/jcph.1996.0130
- X. D. Liu, S. Osher & T. Chan. (1994). Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115, 200-212. https://doi.org/10.1006/jcph.1994.1187
- S. J. Kim & D. E. Cho. (2018). Study on Learning Model for Effective Coding Education. Journal of the Korea Convergence Society, 9(2), 7-12. https://doi.org/10.15207/JKCS.2018.9.2.007
- L. L. Takacs. (1985). A two-step scheme for the advection equation with minimized dissipation and dispersion errors. Month Weather Rev, 113, 1050-1065. https://doi.org/10.1175/1520-0493(1985)113<1050:ATSSFT>2.0.CO;2
- J. A. Carrillo & F. Veci. (2007). Nonoscillatory interpolation methods applied to Vlasov-Based models. SIAM Journal on Scientific Computing, 29(3), 1179-1206. https://doi.org/10.1137/050644549
- C. W. Shu. (2009). High order weighted essentially non-oscillatory schemes for convection dominated problems, SIAM Review, 51, 82-126. https://doi.org/10.1137/070679065
- C. W. Shu & S. Osher. (1988). Efficient implementation of essentially non-oscillatory shock capturing schemes. Journal of Computational Physics, 77(2), 439-471. https://doi.org/10.1016/0021-9991(88)90177-5
- J. M. Qui & A. Christlieb. (2010). A Conservative high order semi-Lagrangian WENO method for the Vlasov equation, Journal of Computational Physics, 229, 1130-1149. https://doi.org/10.1016/j.jcp.2009.10.016
- D. K. Yi & J. E. Park. (2015). Comparative analysis methods for digital simulation. Journal of Digital Convergence, 13(9), 209-218. https://doi.org/10.14400/JDC.2015.13.9.209