DOI QR코드

DOI QR Code

Iterative Self-Interference Channel Estimation for In-Band Full-Duplex Cellular Systems

대역내 전이중 셀룰러 시스템을 위한 반복적인 자기간섭 채널 추정

  • Shin, Changyong (School of Mechanical and ICT Convergence Engineering, Sun Moon University) ;
  • Ryu, Young Kee (School of Mechanical and ICT Convergence Engineering, Sun Moon University)
  • 신창용 (선문대학교 기계ICT융합공학부) ;
  • 유영기 (선문대학교 기계ICT융합공학부)
  • Received : 2018.01.25
  • Accepted : 2018.04.06
  • Published : 2018.04.30

Abstract

In this paper, we propose an iterative self-interference (SI) channel estimation method for in-band full-duplex cellular systems that employ orthogonal frequency division multiple access (OFDMA) on downlink (DL) and single-carrier frequency division multiple access (SC-FDMA) on uplink (UL), as in Long Term Evolution (LTE) systems. The proposed method first acquires coarse estimates of SI channels using DL signals and UL pilots, which are known to the base stations, and then refines the estimates by consecutively exploiting averaging in the frequency domain and channel truncation in the time domain. In addition, the method enhances the estimates further by iteratively executing this estimation procedure, and does not require any radio resources dedicated to SI channel estimation. Simulation results demonstrate that by significantly improving the SI channel estimation performance without requiring exact knowledge of the SI channel length, the proposed method achieves UL channel estimation performance and signal-to-interference-plus-noise ratio (SINR) performance very close to those in perfect SI cancellation.

본 논문은 long-term evolution (LTE) 시스템과 같이 하향링크에서 orthogonal frequency division multiple access (OFDMA) 방식을 이용하고 상향링크에서 single-carrier frequency division multiple access (SC-FDMA) 방식을 이용하는 대역 내 전이중 셀룰러 시스템을 위한 반복적인 자기간섭 채널 추정 방법을 제안한다. 이 방법은 기지국이 알고 있는 하향링크 신호와 상향링크 파일럿 신호를 이용하여 대략적인 자기간섭 채널 추정치를 획득한 후, 이것에 주파수 영역에서의 평균화와 시간 영역에서의 채널 절단을 순차적으로 적용하여 채널 추정치를 정교하게 만든다. 또한 이 방법은 이러한 추정 절차를 반복적으로 수행함으로써 채널 추정치의 정확도를 더욱 향상시키며 자기간섭 채널을 획득하기 위해 별도의 무선자원을 전혀 요구하지 않는다. 시뮬레이션을 통해 제안 방법이 정확한 자기간섭 채널 길이에 대한 정보 없이도 자기간섭 채널 추정 성능을 크게 향상하여 자기간섭이 완벽히 제거된 경우에 매우 근접한 상향링크 채널 추정 성능과 SINR 성능을 달성함을 보인다.

Keywords

References

  1. White paper, "Cisco visual networking index: Global mobile data traffic forecast update 2016-2021," Cisco VNI Report, Feb. 2017.
  2. F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, "Five disruptive technology directions for 5G," IEEE Commun. Mag., vol. 52, no. 2, pp. 74-80, Feb. 2014. DOI: https://doi.org/10.1109/MCOM.2014.6736746
  3. J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, "What will 5G be?," IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065-1082, Jun. 2014. DOI: https://doi.org/10.1109/JSAC.2014.2328098
  4. A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, "In-band full-duplex wireless: Challenges and opportunities," IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637-1652, Sep. 2014. DOI: https://doi.org/10.1109/JSAC.2014.2330194
  5. M. Heino, D. Korpi, T. Huusari, E. Antonio-Rodriguez, S. Venkatasubramanian, T. Riihonen, L. Anttila, C. Icheln, K. Haneda, R. Wichman, and M. Valkama, "Recent advances in antenna design and interference cancellation algorithms for in-band full duplex relays," IEEE Commun. Mag., vol. 53, no. 5, pp. 91-101, May 2015. DOI: https://doi.org/10.1109/MCOM.2015.7105647
  6. Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, "Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection," IEEE Commun. Mag., vol. 53, no. 5, pp. 128-137, May 2015. DOI: https://doi.org/10.1109/MCOM.2015.7105651
  7. D. Kim, H. Lee, and D. Hong, "A survey of in-band full-duplex transmission: From the perspective of phy and mac layers," IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2017-2046, Nov. 2015. DOI: https://doi.org/10.1109/COMST.2015.2403614
  8. J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti, "Achieving single channel full duplex wireless communication," in Proc. 16th Annu. Int. Conf. Mobile Comput. Netw., pp. 1-12, Sep. 2010. DOI: https://doi.org/10.1145/1859995.1859997
  9. M. Duarte and A. Sabharwal, "Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results," in Proc. 44th Asilomar Conf. Signals, Syst. Comput., pp. 1558-1562, Nov. 2010. DOI: https://doi.org/10.1109/ACSSC.2010.5757799
  10. D. Bharadia, E.McMilin, and S. Katti, "Full duplex radios," in Proc. ACM SIGCOMM, pp. 375-386, Aug. 2013. DOI: https://doi.org/10.1145/2486001.2486033
  11. M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, "Practical, real-time, full duplex wireless," in Proc. 17th Annu. Int. Conf. Mobile Comput. Netw., pp. 301-312, Sep. 2011. DOI: https://doi.org/10.1145/2030613.2030647
  12. M. Duarte, C. Dick, and A. Sabharwal, "Experiment-driven characterization of full- duplex wireless systems," IEEE Trans. Wireless Commun., vol. 11, no. 12, pp. 4296-4307, Dec. 2012. DOI: https://doi.org/10.1109/TWC.2012.102612.111278
  13. L. Anttila, D. Korpi, V. Syrjälä, and M. Valkama, "Cancellation of power amplifier induced nonlinear self-interference in full- duplex transceivers," in Proc. 47th Asilomar Conf. Signals, Syst. Comput., pp. 1193-1198, Nov. 2013. DOI: https://doi.org/10.1109/ACSSC.2013.6810482
  14. E. Ahmed, A. M. Eltawil, and A. Sabharwal, "Self-interference cancellation with nonlinear distortion suppression for full-duplex systems," in Proc. 47th Asilomar Conf. Signals, Syst. Comput., pp. 1199-1203, Nov. 2013. DOI: https://doi.org/10.1109/ACSSC.2013.6810483
  15. D. Korpi. L. Anttila, V. Syrjala, and M. Valkama, "Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver," IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1674-1687, Sep. 2014. DOI: https://doi.org/10.1109/JSAC.2014.2330093
  16. A. Masmoudi and T. Le-Ngoc, "Channel estimation and self-interference cancelation in full-duplex communication systems," IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 321-334, Jan. 2017. DOI: https://doi.org/10.1109/TVT.2016.2540538
  17. 3GPP TR 36.211, "Evolved universal terrestrial radio access (EUTRA) - Physical channels and modulation," v. 13.4.0, Feb. 2017.