DOI QR코드

DOI QR Code

Analyis of stormwater and runoff characteristics in Anseongcun basin using HEC-HMS

HEC-HMS을 이용한 안성천 유역의 강우 유출 특성 분석

  • 황병기 (상명대학교 건설시스템공학과) ;
  • 양승빈 (상명대학교 환경자원학과)
  • Received : 2017.12.19
  • Accepted : 2018.04.06
  • Published : 2018.04.30

Abstract

The HEC-HMS model was applied to identify the rainfall-runoff processes for the Anseongchun basin, where the lower part of the stream has been damaged severely by tropical storms in the past. Modeling processes include incorporating with the SCS-CN model for loss, Clark's UH model for transformation, exponential recession model for baseflow, and Muskingum model for channel routing. The parameters were calibrated through an optimization technique using a trial and error method. Sensitivity analysis after calibration was performed to understand the effects of parameters, such as the time of concentration, storage coefficient, and base flow related constants. Two storm water events were simulated by the model and compared with the corresponding observations. Good accuracy in predicting the runoff volume, peak flow, and the time to peak flow was achieved using the selected methods. The results of this study can be used as a useful tool for decision makers to determine a master plan for regional flood control management.

과거 홍수로 인한 침수피해가 자주 발생하였던 안성천 하류 저지대의 홍수-유출 특성을 파악하기 위해서 HEC-HMS 모형을 적용하였다. 모형은 SCS-CN 방법으로 손실계산을, Clark의 단위도법으로 강우의 직접유출 변환을, 지수함수적 감소방법으로 기저유량을, Musingum 방벙으로 하도추적을 하는 과정을 포함한다. 모형에서 매개변수는 중요한 역할을 하므로, 최적화 기법을 시행착오법과 병행하여 최적화 변수를 도출하였다. 또한, 민감도 분석을 통하여 도달시간, 저류함수, 기저유량 관련 상수들이 모형에 미치는 영향을 파악하였다. 도달시간은 첨두유량 발생 시각에 영향을, 저류상수는 첨두 유량의 증감에 영향을 기저유량 감소비는 수문곡선 하강부의 기울기에 영향을 미치는 것으로 나타났다. 최적화 과정을 통하여 모형 보정을 거친 변수를 사용하여 2건의 강우 사상에 대하여 유출모의를 수행하여 실측 자료와 비교를 하였으며, 유출체적, 첨두유량, 첨두시각을 포함한 중요 수문현상에 대하여 상당히 정확하게 모사하는 것으로 나타났다. 따라서, 본 연구의 결과는 정책입안자가 홍수관리대책을 수립하는 데 유용한 도구로서 사용되어 질 수 있을 것으로 사료된다.

Keywords

References

  1. S. C. Yang, S. K. Yang, J. H. Lee, W.Y. Jung, K.H. Ko, "Flood Discharge Analysis on Land Use Changes in Han Stream in Jeju Island", Journal of Environmental Science, vol. 24, no. 4, pp. 425-435, 2015. DOI: https://doi.org/10.5322/JESI.2015.24.4.425
  2. J. H. Choi, J. J. Lee, H. H. Kwon, "An Analysis of Runoff Variation due to Urbanization in Cho-Kyung Stream Watershed", Korean Wetland Society, vol. 11, no. 3, pp. 161-169, 2009.
  3. Ministry of Land and Maritime Affairs, "Comprehensive Flood Damage Mitigation Measures and Stream Valleys of Master Plan for Anseongchun Basin", Water, vol. 7, pp. 5155-5172, 2005.
  4. Huber, W. C. and R. E. Dickinson, "Storm Water Management Model. User's Manual Ver. IV", U.S. EPA, Cincinnati, OH, 1988.
  5. L. A. Rossman, "Storm Water Management Model User's Manual Version 5.0", U.S. EPA, 2010.
  6. US Army Corps of Engineers(USACE), "HEC1 Flood Hydrograph Package User's Manual", Davis, CA, 1998.
  7. US Army Corps of Engineers(USACE), "Hydrologic Modeling System HEC-HMS, User's Manual (version 4.1)", Davis, CA, 2015.
  8. W. U. Jung, S. K. Yang, D. S, Kim, "Flood Discharge to Decision of Parameters in Han Stream", Journal of Environmental Science, vol. 23, no. 4, pp. 533-541, 2014. DOI: http://doi.org/10.5322/JESI.2014.4.533
  9. S. J. Jin, C. H. Ham, K. H. Cho, G. S. Kim, "An Application in the Geum River Basin Using HEC-HMS Model", 38th Convention and Civil Expo, Korean Society of Civil Engineers, pp. 525-528, 2012.
  10. J. H. Lim, B. H. Lee, B. S. Kim, "Analysis of Flood Runoff Characteristics in the Youngdong Region Using HEC-HMS Hydrologic Model", 38th Convention and Civil Expo, Korean Society of Civil Engineers, pp. 718-721, 2012.
  11. D. A. Zema, "Comparing Different Infiltration Methods of the HEC-HMS Model : The Case Study of The Mesima Torrent (Southern Italy)", Land Degradation and Development, vol. 28, pp. 294-308, 2017. DOI: https://doi.org/10.1002/ldr.2591
  12. E. Abushandi, B. Merkel, "Modeling Rainfall Runoff Relationships Using HEC-HMS for a Single Rain Event in an Arid Region of Jordan", Water Resources Management, vol. 27, pp. 2391-2409, 2013. DOI: https://doi.org/10.1007/s11269-013-0293-4
  13. H. Jin, R. Liang, P. Tumura, "Flood Runoff in Semi-arid and Sub-humid Regions, A case Study: A Simulation of Jianghe Watershed in Nothern China", Water, vol. 7, pp. 5155-5172, 2015. DOI: https://doi.org/10.3390/w7095155
  14. Halwatura. D, Najim. M. M. M, "Application of the HEC-HMS model for runoff simulation in a tropical catchment", Environmental Modeling and Software, vol. 46, pp. 155-162, 2013. DOI: https://doi.org/10.1016/j.envsoft.2013.03.006
  15. Ministry of Land, transport and Maritime Affairs, "Water Resources Management Information System (WAMIS)", 2012.
  16. US Army Corps of Engineers(USACE), "Hydrologic Modeling System HEC-HMS, Application's Guide", US Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA, 2015.
  17. Ministry of Environment, "Environmental Geographic Information System (EGIS)", 2012.
  18. National Institute of Agricultural Science, "Soil Environment Information System", 2010.
  19. Ministry of Land, transport and Maritime Affairs, "Design Flood Estimation Tips", 2012.
  20. J. Peters,, "Flood Plain Hydrology Program HEC-1 on IBM Compatible Personal Computers: Lec. 6: Unit Hydrograph Development Course", UC Davis, CA, 1993.
  21. US Army Corps of Engineers(USACE), "Hydrologic Modeling System HEC-HMS, Technical Reference Manual )", Davis, CA, 2010.