Abstract
This paper presents a new method to estimate the pose of a moving object accurately using a monocular camera and a low-end GPS+IMU sensor system. For this goal, we adopted a deep neural network for the semantic segmentation of input images and compared the results with a semantic map of a neighborhood. In this map matching, we use weight tables to deal with label inconsistency effectively. Signals from a low-end GPS+IMU sensor system are used to limit search spaces and minimize the proposed function. For the evaluation, we added noise to the signals from a high-end GPS-IMU system. The results show that the pose can be recovered from the noisy signals. We also show that the proposed method is effective in handling non-open-sky situations.
본 논문에서는 단안 카메라와 비교적 오차가 큰 GPS-IMU 센서를 이용하여 이동체의 정확한 포즈를 예측하는 고정밀 맵매칭 방법을 제안한다. 제안하는 방법은 카메라로부터 입력 받은 영상을 딥뉴럴 네트워크를 이용하여 의미상으로 분할한 결과와 시맨틱 지도 정보를 비교함으로써 달성된다. 카메라로부터 입력 받은 주행 영상은 시맨틱 분할 알고리즘을 통해서 두 개의 클래스로 분할되며, 시맨틱 지도 정보와 가능한 레이블 페어에 대해 설정된 가중치에 따라 비교 정렬함으로써 현재 이동체의 정확한 포즈를 예측할 수 있도록 한다. 이 과정에서 비교적 오차가 큰 GPS-IMU 센서의 신호는 해 공간의 범위를 효과적으로 줄여준다. 본 논문은 비교적 저렴한 센서를 이용하여 증강현실 및 자율주행 등에 필요한 고정밀 맵매칭이 가능함을 보여준다. 보정 전후의 차량 경로를 지도에 비교 도시하고 시맨틱 지도를 현재 입력 영상에 오버레이 하여 제안한 방법의 효과를 입증하였다. 또한 non-open-sky 환경과 같은 GPS-IMU 수신이 어려운 환경에서도 성능 개선이 있음을 확인하였다.