DOI QR코드

DOI QR Code

Analysis of osteogenic potential on 3mol% yttria-stabilized tetragonal zirconia polycrystals and two different niobium oxide containing zirconia ceramics

  • Hein, Aung Thu (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Cho, Young-Dan (Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University) ;
  • Jo, Ye-Hyeon (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Kim, Dae-Joon (Department of Advanced Materials Engineering, Sejong University) ;
  • Han, Jung-Suk (Department of Prosthodontics, School of Dentistry, Seoul National University)
  • 투고 : 2017.07.24
  • 심사 : 2017.10.30
  • 발행 : 2018.04.30

초록

PURPOSE. This study was performed to evaluate the osteogenic potential of 3mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) and niobium oxide containing Y-TZPs with specific ratios, new (Y,Nb)-TZPs, namely YN4533 and YN4533/Al20 discs. MATERIALS AND METHODS. 3Y-TZP, YN4533 and YN4533/Al20 discs (15 mm diameter and 1 mm thickness) were prepared and their average surface roughness ($R_a$) and surface topography were analyzed using 3-D confocal laser microscope (CLSM) and scanning electron microscope (SEM). Mouse pre-osteoblast MC3T3-E1 cells were seeded onto all zirconia discs and evaluated with regard to cell attachment and morphology by (CLSM), cell proliferation by PicoGreen assay, and cell differentiation by Reverse-Transcription PCR and Quantitative Real-Time PCR, and alkaline phosphatase (Alp) staining. RESULTS. The cellular morphology of MC3T3-E1 pre-osteoblasts was more stretched on a smooth surface than on a rough surface, regardless of the material. Cellular proliferation was higher on smooth surfaces, but there were no significant differences between 3Y-TZP, YN4533, and YN4533/Al20. Osteoblast differentiation patterns on YN4533 and YN4533/Al20 were similar to or slightly higher than seen in 3Y-TZP. Although there were no significant differences in bone marker gene expression (alkaline phosphatase and osteocalcin), Alp staining indicated better osteoblast differentiation on YN4533 and YN4533/Al20 compared to 3Y-TZP. CONCLUSION. Based on these results, niobium oxide containing Y-TZPs have comparable osteogenic potential to 3Y-TZP and are expected to be suitable alternative ceramics dental implant materials to titanium for aesthetically important areas.

키워드

참고문헌

  1. Astrand P, Ahlqvist J, Gunne J, Nilson H. Implant treatment of patients with edentulous jaws: a 20-year follow-up. Clin Implant Dent Relat Res 2008;10:207-17.
  2. Adell R, Eriksson B, Lekholm U, Branemark PI, Jemt T. Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 1990;5:347-59.
  3. Steinemann SG. Titanium-the material of choice? Periodontol 2000 1998;17:7-21. https://doi.org/10.1111/j.1600-0757.1998.tb00119.x
  4. Depprich R, Zipprich H, Ommerborn M, Naujoks C, Wiesmann HP, Kiattavorncharoen S, Lauer HC, Meyer U, Kubler NR, Handschel J. Osseointegration of zirconia implants compared with titanium: an in vivo study. Head Face Med 2008;4:30. https://doi.org/10.1186/1746-160X-4-30
  5. Heydecke G, Kohal R, Glaser R. Optimal esthetics in singletooth replacement with the Re-Implant system: a case report. Int J Prosthodont 1999;12:184-9.
  6. Sailer I, Zembic A, Jung RE, Hammerle CH, Mattiola A. Single-tooth implant reconstructions: esthetic factors influencing the decision between titanium and zirconia abutments in anterior regions. Eur J Esthet Dent 2007;2:296-310.
  7. Sicilia A, Cuesta S, Coma G, Arregui I, Guisasola C, Ruiz E, Maestro A. Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients. Clin Oral Implants Res 2008;19:823-35. https://doi.org/10.1111/j.1600-0501.2008.01544.x
  8. Siddiqi A, Payne AG, De Silva RK, Duncan WJ. Titanium allergy: could it affect dental implant integration? Clin Oral Implants Res 2011;22:673-80. https://doi.org/10.1111/j.1600-0501.2010.02081.x
  9. Nakagawa M, Matsuya S, Udoh K. Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys. Dent Mater J 2002;21:83-92. https://doi.org/10.4012/dmj.21.83
  10. Tschernitschek H, Borchers L, Geurtsen W. Nonalloyed titanium as a bioinert metal-a review. Quintessence Int 2005;36:523-30.
  11. Osman RB, Swain MV. A Critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials (Basel) 2015;8:932-58. https://doi.org/10.3390/ma8030932
  12. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  13. Zarone F, Russo S, Sorrentino R. From porcelain-fused-tometal to zirconia: clinical and experimental considerations. Dent Mater 2011;27:83-96. https://doi.org/10.1016/j.dental.2010.10.024
  14. Zembic A, Bosch A, Jung RE, Hammerle CH, Sailer I. Fiveyear results of a randomized controlled clinical trial comparing zirconia and titanium abutments supporting single-implant crowns in canine and posterior regions. Clin Oral Implants Res 2013;24:384-90. https://doi.org/10.1111/clr.12044
  15. Wenz HJ, Bartsch J, Wolfart S, Kern M. Osseointegration and clinical success of zirconia dental implants: a systematic re-view. Int J Prosthodont 2008;21:27-36.
  16. Manzano G, Herrero LR, Montero J. Comparison of clinical performance of zirconia implants and titanium implants in animal models: a systematic review. Int J Oral Maxillofac Implants 2014;29:311-20. https://doi.org/10.11607/jomi.2817
  17. Cionca N, Hashim D, Mombelli A. Zirconia dental implants: where are we now, and where are we heading? Periodontol 2000 2017;73:241-58. https://doi.org/10.1111/prd.12180
  18. Bosshardt DD, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontol 2000 2017;73:22-40. https://doi.org/10.1111/prd.12179
  19. Bachle M, Butz F, Hubner U, Bakalinis E, Kohal RJ. Behavior of CAL72 osteoblast-like cells cultured on zirconia ceramics with different surface topographies. Clin Oral Implants Res 2007;18:53-9. https://doi.org/10.1111/j.1600-0501.2006.01292.x
  20. Hempel U, Hefti T, Kalbacova M, Wolf-Brandstetter C, Dieter P, Schlottig F. Response of osteoblast-like SAOS-2 cells to zirconia ceramics with different surface topographies. Clin Oral Implants Res 2010;21:174-81. https://doi.org/10.1111/j.1600-0501.2009.01797.x
  21. Scarano A, Di Carlo F, Quaranta M, Piattelli A. Bone response to zirconia ceramic implants: an experimental study in rabbits. J Oral Implantol 2003;29:8-12. https://doi.org/10.1563/1548-1336(2003)029<0008:BRTZCI>2.3.CO;2
  22. Hoffmann O, Angelov N, Gallez F, Jung RE, Weber FE. The zirconia implant-bone interface: a preliminary histologic evaluation in rabbits. Int J Oral Maxillofac Implants 2008;23:691-5.
  23. Gahlert M, Roehling S, Sprecher CM, Kniha H, Milz S, Bormann K. In vivo performance of zirconia and titanium implants: a histomorphometric study in mini pig maxillae. Clin Oral Implants Res 2012;23:281-6. https://doi.org/10.1111/j.1600-0501.2011.02157.x
  24. Kim DJ, Jung HJ, Cho DH. Phase transformations of Y2O3 and Nb2O5 doped tetragonal zirconia during low temperature aging in air. Solid State Ionics 1995;80:67-73. https://doi.org/10.1016/0167-2738(95)00115-M
  25. Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater 2008;24:289-98. https://doi.org/10.1016/j.dental.2007.05.005
  26. Nawa M, Nakamoto S, Sekino T, Niihara K. Tough and strong Ce-TZP/alumina nanocomposites doped with titania. Ceram Int 1998;24:497-506. https://doi.org/10.1016/S0272-8842(97)00048-5
  27. Takano T, Tasaka A, Yoshinari M, Sakurai K. Fatigue strength of Ce-TZP/Al2O3 nanocomposite with different surfaces. J Dent Res 2012;91:800-4. https://doi.org/10.1177/0022034512452277
  28. Andreiotelli M, Kohal RJ. Fracture strength of zirconia implants after artificial aging. Clin Implant Dent Relat Res 2009; 11:158-66. https://doi.org/10.1111/j.1708-8208.2008.00105.x
  29. Kohal RJ, Wolkewitz M, Mueller C. Alumina-reinforced zirconia implants: survival rate and fracture strength in a masticatory simulation trial. Clin Oral Implants Res 2010;21:1345-52. https://doi.org/10.1111/j.1600-0501.2010.01954.x
  30. Chappuis V, Cavusoglu Y, Gruber R, Kuchler U, Buser D, Bosshardt DD. Osseointegration of zirconia in the presence of multinucleated giant cells. Clin Implant Dent Relat Res 2016;18:686-98. https://doi.org/10.1111/cid.12375
  31. Kim DJ, Jung HJ, Jang JW, Lee HL. Fracture toughness, ionic conductivity, and low-temperature phase stability of tetragonal zirconia codoped with Yttria and Niobium Oxide. J Am Ceram Soc 1998;81:2309-14.
  32. Ray JC, Panda AB, Saha CR, Pramanik P. Synthesis of niobium(V)- stabilized tetragonal zirconia nanocrystalline powders. J Am Ceram Soc 2003;86:514-6. https://doi.org/10.1111/j.1151-2916.2003.tb03331.x
  33. Gutierrez-Gonzalez CF, Moya JS, Palomares FJ, Bartolome Gomez JF. Low-temperature aging degradation-free 3Y-TZP/Nb composites. J Am Ceram Soc 2010;93:1842-44.
  34. Li P, Chen IW, Penner-Hahn JE. Effect of dopants on zirconia stabilization - An X-ray absorption study: III, chargecompensating dopants. J Am Ceram Soc 1994;77:1289-95. https://doi.org/10.1111/j.1151-2916.1994.tb05404.x
  35. Guo X, Wang Z. Effect of niobia on the defect structure of yttria-stabilized zirconia. J Euro Ceram Soc 1998;18:237-40. https://doi.org/10.1016/S0955-2219(97)00123-4
  36. Cho YD, Shin JC, Kim HL, Gerelmaa M, Yoon HI, Ryoo HM, Kim DJ, Han JS. Comparison of the osteogenic potential of titanium- and modified zirconia-based bioceramics. Int J Mol Sci 2014;15:4442-52. https://doi.org/10.3390/ijms15034442
  37. Johansson CB, Albrektsson T. A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. Clin Oral Implants Res 1991;2:24-9. https://doi.org/10.1034/j.1600-0501.1991.020103.x
  38. Matsuno H, Yokoyama A, Watari F, Uo M, Kawasaki T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 2001;22:1253-62. https://doi.org/10.1016/S0142-9612(00)00275-1
  39. Godley R, Starosvetsky D, Gotman I. Bonelike apatite formation on niobium metal treated in aqueous NaOH. J Mater Sci Mater Med 2004;15:1073-7. https://doi.org/10.1023/B:JMSM.0000046388.07961.81
  40. Kim DJ. Effect of Ta2O5, Nb2O5, and HfO2 alloying on the transformability of Y2O3-stabilized tetragonal ZrO2. J Am Ceram Soc 1990;73:115-20. https://doi.org/10.1111/j.1151-2916.1990.tb05100.x
  41. Kim DJ, Lee MH, Lee DY, Han JS. Mechanical properties, phase stability, and biocompatibility of (Y,Nb)-TZP/Al2O3 composite abutments for dental implant. J Biomed Mater Res 2000;53:438-43. https://doi.org/10.1002/1097-4636(2000)53:4<438::AID-JBM19>3.0.CO;2-3
  42. Ewais O, Al Abbassy F, Ghoneim MM, Aboushelib MN. Novel zirconia surface treatments for enhanced osseointegration: Laboratory characterization. Int J Dent 2014;2014:203940.
  43. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 2004;17:536-43.
  44. Quirynen M, Van Assche N. RCT comparing minimally with moderately rough implants. Part 2: microbial observations. Clin Oral Implants Res 2012;23:625-34. https://doi.org/10.1111/j.1600-0501.2011.02255.x
  45. Taniguchi Y, Kakura K, Yamamoto K, Kido H, Yamazaki J. Accelerated Osteogenic Differentiation and Bone Formation on Zirconia with Surface Grooves Created with Fiber Laser Irradiation. Clin Implant Dent Relat Res 2016;18:883-94. https://doi.org/10.1111/cid.12366
  46. Raigrodski AJ, Chiche GJ, Potiket N, Hochstedler JL, Mohamed SE, Billiot S, Mercante DE. The efficacy of posterior three-unit zirconium-oxide-based ceramic fixed partial dental prostheses: a prospective clinical pilot study. J Prosthet Dent 2006;96:237-44. https://doi.org/10.1016/j.prosdent.2006.08.010
  47. Sailer I, Pjetursson BE, Zwahlen M, Hammerle CH. A systematic review of the survival and complication rates of allceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part II: Fixed dental prostheses. Clin Oral Implants Res 2007;18:86-96.

피인용 문헌

  1. Effects of surface roughness of ceria-stabilized zirconia/alumina nanocomposite on the morphology and function of human gingival fibroblasts vol.40, pp.2, 2021, https://doi.org/10.4012/dmj.2019-435