DOI QR코드

DOI QR Code

Three-dimensional finite element analysis of the splinted implant prosthesis in a reconstructed mandible

  • Heo, Kyung-Hoi (Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Lim, Young-Jun (Dental Research Institute and Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Kim, Myung-Joo (Dental Research Institute and Department of Prosthodontics, School of Dentistry, Seoul National University) ;
  • Kwon, Ho-Beom (Dental Research Institute and Department of Prosthodontics, School of Dentistry, Seoul National University)
  • 투고 : 2017.07.20
  • 심사 : 2017.12.05
  • 발행 : 2018.04.30

초록

PURPOSE. The purpose of this study was to analyze the effects of the splinted implant prosthesis in a reconstructed mandible using three-dimensional finite element analysis. MATERIALS AND METHODS. Three-dimensional finite element models were generated from a patient's computed tomography data. The patient had undergone partial resection of the mandible that covered the area from the left canine to the right condyle. The mandible was reconstructed using a fibula bone graft and dental implants. The left mandibular premolars and molars remained intact. Three types of models were created. The implant-supported prosthesis was splinted and segmented into two or three pieces. Each of these models was further subcategorized into two situations to compare the stress distribution around normal teeth and implants. Oblique loading of 300 N was applied on both sides of the mandible unilaterally. The maximum von Mises stress and displacement of the models were analyzed. RESULTS. The stress distribution of the natural mandible was more uniform than that of the reconstructed fibula. When the loading was applied to the implant prosthesis of reconstructed fibula, stress was concentrated at the cortical bone around the neck of the implants. The three-piece prosthesis model showed less uniform stress distribution compared to the others. Displacement of the components was positively correlated with the distance from areas of muscle attachment. The three-piece prosthesis model showed the greatest displacement. CONCLUSION. The splinted implant prosthesis showed a more favorable stress distribution and less displacement than the separated models in the reconstructed mandible.

키워드

참고문헌

  1. Flemming AF, Brough MD, Evans ND, Grant HR, Harris M, James DR, Lawlor M, Laws IM. Mandibular reconstruction using vascularised fibula. Br J Plast Surg 1990;43:403-9. https://doi.org/10.1016/0007-1226(90)90003-I
  2. Komisar A. The functional result of mandibular reconstruction. Laryngoscope 1990;100:364-74.
  3. August M, Tompach P, Chang Y, Kaban L. Factors influencing the long-term outcome of mandibular reconstruction. J Oral Maxillofac Surg 2000;58:731-7. https://doi.org/10.1053/joms.2000.7255
  4. Chang YM, Santamaria E, Wei FC, Chen HC, Chan CP, Shen YF, Hou SP. Primary insertion of osseointegrated dental implants into fibula osteoseptocutaneous free flap for mandible reconstruction. Plast Reconstr Surg 1998;102:680-8. https://doi.org/10.1097/00006534-199809010-00010
  5. Hidalgo DA. Fibula free flap: a new method of mandible reconstruction. Plast Reconstr Surg 1989;84:71-9. https://doi.org/10.1097/00006534-198907000-00014
  6. Zlotolow IM, Huryn JM, Piro JD, Lenchewski E, Hidalgo DA. Osseointegrated implants and functional prosthetic rehabilitation in microvascular fibula free flap reconstructed mandibles. Am J Surg 1992;164:677-81. https://doi.org/10.1016/S0002-9610(05)80733-0
  7. Kuiper JH, Huiskes R. The predictive value of stress shielding for quantification of adaptive bone resorption around hip replacements. J Biomech Eng 1997;119:228-31. https://doi.org/10.1115/1.2796084
  8. Sugiura T, Horiuchi K, Sugimura M, Tsutsumi S. Evaluation of threshold stress for bone resorption around screws based on in vivo strain measurement of miniplate. J Musculoskelet Neuronal Interact 2000;1:165-70.
  9. Hoshaw SJ, Brunski JB, Cochran GVB. Mechanical loading of Branemark implants affects interfacial bone modeling and remodeling. Intl J Oral Maxillofac Implants 1994;9:345-60.
  10. Brunski JB. In vivo bone response to biomechanical loading at the bone/dental-implant interface. Adv Dent Res 1999;13:99-119. https://doi.org/10.1177/08959374990130012301
  11. Kopp CD. Overdentures and osseointegration. Case studies in treatment planning. Dent Clin North Am 1990;34:729-39.
  12. Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 2001;85:585-98. https://doi.org/10.1067/mpr.2001.115251
  13. Teixeira ER, Sato Y, Akagawa Y, Shindoi N. A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics. J Oral Rehabil 1998;25:299-303. https://doi.org/10.1111/j.1365-2842.1998.00244.x
  14. Meijer HJ, Starmans FJ, Steen WH, Bosman F. A three-dimensional, finite-element analysis of bone around dental implants in an edentulous human mandible. Arch Oral Biol 1993;38:491-6. https://doi.org/10.1016/0003-9969(93)90185-O
  15. Korioth TW, Johann AR. Influence of mandibular superstructure shape on implant stresses during simulated posterior biting. J Prosthet Dent 1999;82:67-72. https://doi.org/10.1016/S0022-3913(99)70129-0
  16. Tie Y, Wang DM, Ji T, Wang CT, Zhang CP. Threedimensional finite-element analysis investigating the biomechanical effects of human mandibular reconstruction with autogenous bone grafts. J Craniomaxillofac Surg 2006;34:290-8. https://doi.org/10.1016/j.jcms.2006.03.004
  17. Nagasao T, Kobayashi M, Tsuchiya Y, Kaneko T, Nakajima T. Finite element analysis of the stresses around endosseous implants in various reconstructed mandibular models. J Craniomaxillofac Surg 2002;30:170-77. https://doi.org/10.1054/jcms.2002.0310
  18. Kregzde M. A method of selecting the best implant prosthesis design option using three-dimensional finite element analysis. Int J Oral Maxillofac Implants 1993;8:662-73.
  19. Bal BT, Caglar A, Aydin C, Yilmaz H, Bankoglu M, Eser A. Finite element analysis of stress distribution with splinted and nonsplinted maxillary anterior fixed prostheses supported by zirconia or titanium implants. Int J Oral Maxillofac Implants 2013;28:e27-38. https://doi.org/10.11607/jomi.2442
  20. Schiffleger BE, Ziebert GJ, Dhuru VB, Brantley WA, Sigaroudi K. Comparison of accuracy of multiunit one-piece castings. J Prosthet Dent 1985;54:770-6. https://doi.org/10.1016/0022-3913(85)90467-6
  21. Zarone F, Apicella A, Nicolais L, Aversa R, Sorrentino R. Mandibular flexure and stress build-up in mandibular fullarch fixed prostheses supported by osseointegrated implants. Clin Oral Implants Res 2003;14:103-14. https://doi.org/10.1034/j.1600-0501.2003.140114.x
  22. Alvarez-Arenal A, Brizuela-Velasco A, DeLlanos-Lanchares H, Gonzalez-Gonzalez I. Should oral implants be splinted in a mandibular implant-supported fixed complete denture? A 3-dimensional-model finite element analysis. J Prosthet Dent 2014;112:508-14. https://doi.org/10.1016/j.prosdent.2013.12.004
  23. Maezawa N, Shiota M, Kasugai S, Wakabayashi N. Threedimensional stress analysis of tooth/lmplant-retained longspan fixed dentures. Int J Oral Maxillofac Implants 2007;22:710-8.
  24. Dittmer MP, Kohorst P, Borchers L, Stiesch-Scholz M. Finite element analysis of a four-unit all-ceramic fixed partial denture. Acta Biomater 2009;5:1349-55. https://doi.org/10.1016/j.actbio.2008.11.015
  25. Rees JS, Jacobsen PH. Elastic modulus of the periodontal ligament. Biomaterials 1997;18:995-9. https://doi.org/10.1016/S0142-9612(97)00021-5
  26. Sakaguchi RL, Borgersen SE. Nonlinear contact analysis of preload in dental implant screws. Int J Oral Maxillofac Implants 1995;10:295-302.
  27. Curtis DA, Plesh O, Miller AJ, Curtis TA, Sharma A, Schweitzer R, Hilsinger RL, Schour L, Singer M. A comparison of masticatory function in patients with or without reconstruction of the mandible. Head Neck 1997;19:287-96. https://doi.org/10.1002/(SICI)1097-0347(199707)19:4<287::AID-HED7>3.0.CO;2-X
  28. Curtis DA, Plesh O, Hannam AG, Sharma A, Curtis TA. Modeling of jaw biomechanics in the reconstructed mandibulectomy patient. J Prosthet Dent 1999;81:167-73. https://doi.org/10.1016/S0022-3913(99)70244-1
  29. O'Mahony AM, Williams JL, Spencer P. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri-implant stress and strain under oblique loading. Clin Oral Implants Res 2001;12:648-57. https://doi.org/10.1034/j.1600-0501.2001.120614.x
  30. Bahr W, Stoll P, Wachter R. Use of the "double barrel" free vascularized fibula in mandibular reconstruction. J Oral Maxillofac Surg 1998;56:38-44. https://doi.org/10.1016/S0278-2391(98)90914-4
  31. Sulik WD, White JT. Modification of stresses surrounding abutment teeth for fixed partial dentures induced by various levels of periodontal support: a photoelastic study. J Prosthet Dent 1981;46:32-5. https://doi.org/10.1016/0022-3913(81)90131-1
  32. Yang HS, Thompson VP. A two-dimensional stress analysis comparing fixed prosthodontic approaches to the tilted molar abutment. Int J Prosthodont 1991;4:416-24.
  33. Poiate IA, de Vasconcellos AB, de Santana RB, Poiate E. Three-dimensional stress distribution in the human periodontal ligament in masticatory, parafunctional, and trauma loads: finite element analysis. J Periodontol 2009;80:1859-67. https://doi.org/10.1902/jop.2009.090220
  34. Frost HM. Perspectives: bone's mechanical usage windows. Bone Miner 1992;19:257-71. https://doi.org/10.1016/0169-6009(92)90875-E
  35. Hansson S. A conical implant-abutment interface at the level of the marginal bone improves the distribution of stresses in the supporting bone. An axisymmetric finite element analysis. Clin Oral Implants Res 2003;14:286-93. https://doi.org/10.1034/j.1600-0501.2003.140306.x
  36. Isidor F. Influence of forces on peri-implant bone. Clin Oral Implants Res 2006;17:8-18.
  37. Guichet DL, Yoshinobu D, Caputo AA. Effect of splinting and interproximal contact tightness on load transfer by implant restorations. J Prosthet Dent 2002;87:528-35. https://doi.org/10.1067/mpr.2002.124589
  38. Clelland NL, Seidt JD, Daroz LG, McGlumphy EA. Comparison of strains for splinted and nonsplinted implant prostheses using three-dimensional image correlation. Int J Oral Maxillofac Implants 2010;25:953-9.
  39. Stoumpis C, Kohal RJ. To splint or not to splint oral implants in the implant-supported overdenture therapy? A systematic literature review. J Oral Rehabil 2011;38:857-69. https://doi.org/10.1111/j.1365-2842.2011.02220.x
  40. Barao VA, Delben JA, Lima J, Cabral T, Assuncao WG. Comparison of different designs of implant-retained overdentures and fixed full-arch implant-supported prosthesis on stress distribution in edentulous mandible-a computed tomography-based three-dimensional finite element analysis. J Biomech 2013;46:1312-20. https://doi.org/10.1016/j.jbiomech.2013.02.008
  41. Ashman RB, Van Buskirk WC. The elastic properties of a human mandible. Adv Dent Res 1987;1:64-7. https://doi.org/10.1177/08959374870010011401
  42. Fischman BM. The influence of fixed splints on mandibular flexure. J Prosthet Dent 1976;35:643-7. https://doi.org/10.1016/0022-3913(76)90321-8

피인용 문헌

  1. Stress distribution of molars restored with minimal invasive and conventional technique: a 3-D finite element analysis vol.34, pp.4, 2018, https://doi.org/10.14368/jdras.2018.34.4.297