DOI QR코드

DOI QR Code

Microstructure and Strength of Alkali-Activated Kaolin-Fly Ash Blend Binder

카올린-플라이애시 혼합 알칼리 활성화 결합재의 미세구조 및 강도 특성

  • Jun, Yubin (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Kim, Tae-Wan (Research Institute of Industrial Technology, Pusan National University) ;
  • Oh, Jae-Eun (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
  • 전유빈 (울산과학기술원 도시환경공학부) ;
  • 김태완 (부산대학교 생산기술연구소) ;
  • 오재은 (울산과학기술원 도시환경공학부)
  • Received : 2017.12.11
  • Accepted : 2018.03.15
  • Published : 2018.03.30

Abstract

This study presents microstructural characteristics and strength properties of alkali-activated kaolin(K)-fly ash(FA) blends binders. The compressive strength, X-ray diffraction(XRD), thermogravimetric(TG) analysis and SEM/EDS were measured for hardened samples. The results were shown that all the samples had developed the compressive strength over time, regardless of replacement levels of K. It was found that when the amount of K increased, the strengths of samples decreased. In XRD result, no new crystalline phases were observed in all the hardened samples other than the crystalline components of raw FA and K, whereas TG analysis showed that N-A-S-H gel was formed as a reaction product in all the samples. Samples did not have the typical microstructure of dense, and there is little significant difference between the microstructures of the samples despite the differences in the strength testing results with replacement ratios of K. This study showed that the strength of sample was larger for lower Si/Al ratio of reaction product formed in sample. According to the correlation between Si/Al ratio and strength in this study, it is expected that if a chemical additive is used for lowering the Si/Al ratio of reaction product(i.e., increasing the $Al_2O_3$ solubility) in alkali-activated K-FA blends binders, strength improvement in K-FA blends binders could be achieved.

본 연구에서는 카올린과 플라이애시의 두 종류의 결합재를 혼합하여 알칼리 활성화시킨 후, 경화체의 강도 및 미세구조 분석을 수행하였다. 이를 위해, 경화된 시험체에 대해 압축강도, X선 회절분석(XRD), 열중량(TG) 분석 및 SEM/EDS 분석을 실시하였다. 카올린-플라이애시 혼합 결합재는 카올린 혼합에 관계없이 모든 경화체에 대해서 재령에 따라 압축강도가 증가하는 경향을 나타냈으며, 플라이애시 중량에 대한 카올린의 혼합비가 증가할수록 압축강도는 낮아지는 것으로 나타났다. XRD 분석 결과에서는 제작된 모든 시험체에 대해서 플라이애시 및 카올린의 원재료에 함유된 구성광물 이외에 새로운 결정질 물질 형성은 확인되지 않았지만, 이에 반해 TG 분석에서는 모든 시험체 내에서 N-A-S-H gel이 반응생성물로 형성된 것을 알 수 있었다. 모든 시험체들의 내부는 대체적으로 치밀하지 않은 것으로 나타났으며, 카올린 치환율에 따른 강도 발현의 차이가 있음에도 불구하고, 내부의 조직구조에서 뚜렷한 차이는 없는 것으로 나타났다. 본 연구에서 보여준 반응생성물의 Si/Al가 낮을수록 시험체의 강도가 상대적으로 높은, Si/Al와 강도와의 상관관계에 따라, 반응생성물의 Si/Al가 낮도록, 즉 사용되는 결합재의 $Al_2O_3$의 용해도를 높일 수 있는 화학적 첨가제가 고려된다면, 카올린-플라이애시 혼합 결합재의 강도 개선 효과를 기대할 수 있을 것으로 판단된다.

Keywords

References

  1. Altan, E., Erdogan, S.T. (2012). Alkali activation of a slag at ambient and elevated temperatures, Cement & Concrete Composites, 34, 131-139. https://doi.org/10.1016/j.cemconcomp.2011.08.003
  2. Bakharev, T. (2005). Geopolymeric materials prepared using Class F fly ash and elevated temperature curing, Cement and Concrete Research, 35, 1224-1232. https://doi.org/10.1016/j.cemconres.2004.06.031
  3. Bernal, S.A., MejMa De GutiMrrez, R., Provis, J.L. (2012). Engineering and durability properties of concrete based on alkali-activated granulated blast furnace slag/metakaolin blends, Construction and Building Materials, 65, 51-59.
  4. Boonserm, K., Sata, V., Pimraksa, K., Chindaprasirt, P. (2012). Impoved geopolymerization of bottom ash by incorporating fly ash and using waste gypsum as additive, Cement and Concrete Composites, 34, 819-824. https://doi.org/10.1016/j.cemconcomp.2012.04.001
  5. Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N., Ramezanianpour, A.A. (2011). Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans, Cement and Concrete Composites, 33(2), 251-260. https://doi.org/10.1016/j.cemconcomp.2010.10.021
  6. Cheng, H., Liu, Q., Yang, J., Zhang, Q., Frost, R.L. (2010). Thermal behaviour and decomposition of kaolinite-potassium acetate intercalarion composite, Thermochimica Acta, 503-504, 16-20. https://doi.org/10.1016/j.tca.2010.02.014
  7. Cheng, T.W., Chiu, J.P. (2003). Fire-resistant geopolymer produced by granulated blast furnace slag, Minerals Engineering, 16(3), 205-210. https://doi.org/10.1016/S0892-6875(03)00008-6
  8. Choi, J.I., Park, S.E., Lee, B.Y. (2017). Compressive and tensile properties of fiber-reinforced cementless composites according to the combination of sodium-type alkali-activators, Journal of the Korean Recycled Construction Resources Institute, 5(1), 29-36 [in Korean]. https://doi.org/10.14190/JRCR.2017.5.1.029
  9. Choi, S., Lee, K.M., Yoo, S.W. (2015). Shear behavior of RC beams using alkali activated slag concrete, Journal of the Korean Recycled Construction Resources Institute, 3(1), 58-63 [in Korean]. https://doi.org/10.14190/JRCR.2015.3.1.058
  10. Criado, M., Aperador, W., Sobrados, I. (2016). Microstructural and mechanical properties of alkali activated colombian raw materials, Materials, 9, 158. https://doi.org/10.3390/ma9030158
  11. De Silva, P., Sagoe-Crenstil, K., Sirivivatnanon, V. (2007). Kinetics of geopolymerization: Role of $Al_{2}O_{3}$ and $SiO_{2}$. Cement and Concrete Research, 37, 512-518. https://doi.org/10.1016/j.cemconres.2007.01.003
  12. Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., Van Deventer, J.S.J. (2007). Geopolymer technology: the current state of the art, Journal of Materials Science, 42, 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
  13. Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, M.W., Van Deventer, J.S.J. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1-3), 47-58. https://doi.org/10.1016/j.colsurfa.2005.06.060
  14. Fernandez-Jimenez, A., Monzo, M., Vicent, M., Barba, A., Palomo, A. (2008). Alkaline activation of metakaolin-fly ash mixtures: Obtain of Zeoceramics and Zeocements, Microporous and Mesoporous Materials, 108(1-3), 41-49. https://doi.org/10.1016/j.micromeso.2007.03.024
  15. Hardjito, D., Wallah, S.E., Sumajouw, D.W., Rangan, B.V. (2004). On the development of fly ash-based geopolymer concrete, ACI Materials Journal, 101, 467-472.
  16. Ismail, I., Bernal, S.A., Provis, J.L., San Nicolas, R., Hamdan, S., Van Deventer, J.S.J. (2014). Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash, Cement and Concrete Composites, 45, 125-135. https://doi.org/10.1016/j.cemconcomp.2013.09.006
  17. Jeong, Y., Park, H., Jun, Y., Jeong, J.H., Oh, J.E. (2015). Microstructural verification of the strength performance of ternary blended cement systems with high volumes of fly ash and GGBFS, Construction and Building Materials, 95, 96-107. https://doi.org/10.1016/j.conbuildmat.2015.07.158
  18. Jun, Y., Oh, J.E. (2014). Mechanical and microstructural dissimilarities in alkali-activation for six Class F Korean fly ashes, Construction and Building Materials, 52, 396-403. https://doi.org/10.1016/j.conbuildmat.2013.11.058
  19. Kim, J.S., Park, J.H. (2016). An experiment on bond behaviours of reinforcements embedded in geopolymer concrete using direct pull-out test, Journal of the Korean Recycled Construction Resources Institute, 4(4), 454-462 [in Korean]. https://doi.org/10.14190/JRCR.2016.4.4.454
  20. Kim, M.S., Jun, Y., Lee, C., Oh, J.E. (2013). Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag, Cement and Concrete Research, 54, 208-214. https://doi.org/10.1016/j.cemconres.2013.09.011
  21. Kim, M.S., Beak, D.I., Kang, J.H. (2012). Sulfate and freeze-thaw resistance characteristic of multy-component cement concrete considering marine environment, Journal of Ocean Engineering and Technology, 26(3), 26-32 [in Korean]. https://doi.org/10.5574/KSOE.2012.26.3.026
  22. Kim, S.Y., Jun, Y., Jeon, D., Oh, J.E. (2017). Synthesis of structural binder for red brick production based on red mud and fly ash activated using $Ca(OH)_{2}$ and $Na_{2}CO_{3}$, Construction and Building Materials, 147, 101-116. https://doi.org/10.1016/j.conbuildmat.2017.04.171
  23. Kim, T.W., Jun, Y., Eom, J.S. (2015). Mechanical properties of granulated ground blast furnace slag on blended activator of sulfate and alkali, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(5), 104-111 [in Korean]. https://doi.org/10.11112/JKSMI.2015.19.5.104
  24. Li, C., Sun, H., Li, L. (2010). A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements, Cement and Concrete Research, 40, 1341-1349. https://doi.org/10.1016/j.cemconres.2010.03.020
  25. Li, X., Ma, X., Zhang, S., Zheng, E. (2013). Mechanical properties and microstructure of Class C fly ash-based geopolymer paste and mortar, Materials, 6(4), 1485-1495. https://doi.org/10.3390/ma6041485
  26. Nemecek, J., Smilauer, V., Kopecky, L. (2009). Characterization of alkali-activated fly-ash by nanoindentation. Nanotechnology in Construction 3, Springer, Berlin, Heidelberg, 337-343.
  27. Oh, J.E., Jun, Y., Jeong, Y. (2014). Characterization of geopolymers from compositionally and physically different Class F fly ashes, Cement and Concrete Composites, 50, 16-26. https://doi.org/10.1016/j.cemconcomp.2013.10.019
  28. Oh, J.E., Monteiro, P.J.M., Jun, S.S., Choi, S., Clark, S.M. (2010). The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers, Cement and Concrete Research, 40(2), 189-196. https://doi.org/10.1016/j.cemconres.2009.10.010
  29. Oh, J.E., Moon, J., Oh, S.J., Clark, S.M., Monteiro, P.J.M. (2012). Microstructural and compositional change of NaOH-activated high calcium fly ash by incorporating Na-aluminate and co-existence of geopolymeric gel and C-S-H(I), Cement and Concrete Research, 42(5), 673-685. https://doi.org/10.1016/j.cemconres.2012.02.002
  30. Okoye, F.N., Durgaprasad, J., Singh, N.B. (2015). Mechanical properties of alkali activated flyash/kaolin based geopolymer concrete, Construction and Building Materials, 98, 685-691. https://doi.org/10.1016/j.conbuildmat.2015.08.009
  31. Palomo, A., Grutzeck, M.W., Blanco, M.T. (1999). Alkali-activated fly ashes: A cement for the future, Cement and Concrete Research, 29, 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  32. Pane, I., Hansen, W. (2005). Investigation of blended cement hydration by isothermal calorimetry and thermal analysis, Cement and Concrete Research, 35, 1155-1164. https://doi.org/10.1016/j.cemconres.2004.10.027
  33. Rashad, A.M., Zeedan, S.R. (2011). The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load, Construction and Building Materials. 24, 3098-3107.
  34. Shvarzman, A., Kovler, K., Grader, G.S., Shter, G.E. (2003). The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite, Cement and Concrete Research, 33, 405-416. https://doi.org/10.1016/S0008-8846(02)00975-4
  35. Slaty, F., Khoury, H., Wastiels, J., Rahier, H. (2013). Characterization of alkali activated kaolinitic clay, Applied Clay Science, 75-76, 120-125. https://doi.org/10.1016/j.clay.2013.02.005
  36. Somna, K., Jatruapitakkul, C., Kajitvichyanukul, P., Chindaprasirt, P. (2011). NaOH-activated ground fly ash geopolymer cured at ambient temperature, Fuel, 90(6), 2118-2124. https://doi.org/10.1016/j.fuel.2011.01.018
  37. Tippayasam, C., Keawpapasson, P., Thavorniti, P., Panyathanmaporn, T., Leonelli, C., Chaysuwan, D. (2014). Construction and Building Materials, 53, 455-459. https://doi.org/10.1016/j.conbuildmat.2013.11.079
  38. Van Jaarsveld, J.G.S., Van Deventer, J.S.J., Lukey, G.C. (2002). The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers, Chemical Engineering Journal, 89, 63-73. https://doi.org/10.1016/S1385-8947(02)00025-6
  39. Xu, H., Van Deventer, J.S.J. (2003). Effect of source materials on geopolymerization, Industrial & Engineering Chemistry Research, 42(8), 1698-1706. https://doi.org/10.1021/ie0206958
  40. Zhang, J., Scherer, G.W. (2011). Comparison of methods for arresting hydration of cement, Cement and Concrete Research, 41, 1024-1036. https://doi.org/10.1016/j.cemconres.2011.06.003
  41. Zhang, L., Ahmari, S., Zhang, J. (2011). Synthesis and characterization of fly ash modified mine tailings-based geopolymers, Construction and Building Materials, 25, 3773-3781. https://doi.org/10.1016/j.conbuildmat.2011.04.005
  42. Zhang X., Lin, S., Chen, Z., Megharaj, M., Naidu, R. (2011). Kaolinite-supported nanoscale zero-valent iron for removal of $Pb^{2+}$ from aqueous solution: Reactivity, characterization and mechanism. Water Research, 45, 3481-3488. https://doi.org/10.1016/j.watres.2011.04.010
  43. Zhang, X., Lin, S., Lu, X.Q., Chen, Z.L. (2010). Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent rion, Chemical Engineering Journal, 163(3), 243-248. https://doi.org/10.1016/j.cej.2010.07.056
  44. Zhu, H., Zhang, Z., Zhu, Y., Tian, L. (2014). Durability of alkali-activated fly ash concrete: chloride penetration in pastes and mortars, Construction and Building Materials, 65, 51-59. https://doi.org/10.1016/j.conbuildmat.2014.04.110
  45. Zivica, V. (2006). Effectiveness of new silica fume alkali activator, Cement & Concrete Composites, 28, 21-25. https://doi.org/10.1016/j.cemconcomp.2005.07.004
  46. Zivica, V. (2007). Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures, Construction and Building Materials, 21, 1463-1469. https://doi.org/10.1016/j.conbuildmat.2006.07.002