DOI QR코드

DOI QR Code

ZrO2/TiO2/Organosilane Hybrid Composites via Low Temperature Sol-Gel Process for Hard and Transparent Coating

저온 졸-겔 법을 이용한 투명 하드코팅 필름용 ZrO2/TiO2/Organosilane 복합체 연구

  • Received : 2018.01.25
  • Accepted : 2018.03.01
  • Published : 2018.03.30

Abstract

In this study, we prepared hybrid composites by using low temperature sol-gel process for transparent and hard coating film. The hybrid composites consist of $ZrO_2/TiO_2/organosilane$, of which organosilane was introduced 3-(trimethoxysilyl)propyl methacrylate due to the role of a photocurable ceramic material for low temperature process. The ceramic composites with various composition ratios were coated on a polycarbonate substrate using a sol-gel process of low temperature process, and characterized optical and mechanical properties of coated thin film. The transparencies of coated thin films were 97.5 % or more, and the pencil hardness were 9H or more. In the case of the ZTS-2-1, the nano-indentation hardness was measured at the highest value of 1.14 GPa.

본 연구에서는 투명도와 기계적 특성을 향상시키기 위해 저온 공정의 졸-겔 법을 이용하여 하이브리드 복합체의 코팅 박막을 제조하였다. 하이브리드 복합체로는 $ZrO_2/TiO_2/organosilane$을 사용하였으며, 그 중 organosilane은 3-(trimethoxysilyl)propyl methacrylate을 사용하였고 이는 저온 공정의 광경화 반응을 위해 도입되었다. 다양한 조성비로 합성된 복합체를 폴리 카보네이트 기판 위에 저온 공정의 졸-겔 법을 이용하여 광경화와 열처리 공정을 거처 코팅 박막을 제조하였고 이 코팅 박막의 광학 특성 및 기계적 강도를 확인하였다. 코팅 박막은 가시광선 영역에서 97.5 % 이상의 투과도를 가짐을 확인하였고 기계적 강도는 9H 이상의 연필 경도를 가진 것을 확인하였다. 특히 ZTS-2-1 코팅 박막의 나노 압입 경도는 1.14 GPa로 가장 높게 측정되었다.

Keywords

References

  1. M. Nogami, “Glass preparation of the $ZrO_2$-$SiO_2$ system by the sol-gel process from metal alkoxides,” J. Non-Cryst. Solids, Vol. 69, No. 2, pp. 415-423, (1985). https://doi.org/10.1016/0022-3093(85)90043-2
  2. T. Van Gestel, C. Vandecasteele, A. Buekenhoudt, C. Dotremont, J. Luyten, R. Leysen, B. Van der Bruggen, G. Maes, “Alumina and titania multilayer membranes for nanofiltration: preparation, characterization and chemical stability,” J. Membr. Sci., Vol. 207, No. 1, pp. 73-89, (2002). https://doi.org/10.1016/S0376-7388(02)00053-4
  3. J. B. Wachtman, W. R. Cannon, M. J. Matthewson, Mechanical properties of ceramics. John Wiley & Sons, (2009).
  4. V. Fiorentini, G. Gulleri, "Theoretical evaluation of zirconia and hafnia as gate oxides for Si microelectronics, Phys. Rev. Lett., Vol. 89, No. 26, pp. 266101, (2002). https://doi.org/10.1103/PhysRevLett.89.266101
  5. H. Sato, K. Yamada, G. Pezzotti, M. Nawa, S. Ban, “Mechanical properties of dental zirconia ceramics changed with sandblasting and heat treatment,” Dent. Mate. J., Vol. 27, No. 3, pp. 408-414, (2008). https://doi.org/10.4012/dmj.27.408
  6. J.-Y. Hwang, H.-S. Hahm, “Preparation of CuO-$CeO_2$ mixed oxide catalyst by sol-gel method and its application to preferential oxidation of CO,” J. Korean Oil Chem. Soc., Vol. 34, No. 4, pp. 883-891, (2017).
  7. J. Liu, H. Yan, K. Jiang, "Mechanical properties of graphene platelet-reinforced alumina ceramic composites," Ceram. Int. Vol. 39, No. 6, pp. 6215-6221, (2013). https://doi.org/10.1016/j.ceramint.2013.01.041
  8. S. C. Pillai, P. Periyat, R. George, D. E. McCormack, M. K. Seery, H. Hayden, J. Colreavy, D. Corr, S. J. Hinder, “Synthesis of high-temperature stable anatase $TiO_2$ photocatalyst,” J. Phys. Chem. C, Vol. 111, No. 4, pp. 1605-1611, (2007). https://doi.org/10.1021/jp065933h
  9. M. S. Lee, N. J. Jo, “Abrasion-resistance and Optical Properties of Sol-Gel Derived Organic-Inorganic Hybrid Coatings,” J. Korean Ind. Eng. Chem., Vol. 12, No. 6, pp. 643-648, (2001).
  10. X. Cao, R. Vassen, D. Stoever, “Ceramic materials for thermal barrier coatings,” J. Eur. Ceram. Soc., Vol. 24, No. 1, pp. 1-10, (2004). https://doi.org/10.1016/S0955-2219(03)00129-8
  11. E. J. Go, S. H. Kim, “Synthesis of ITO(Indium Titanium Oxide) particle by sol-gel and investigation on light transmittance of deposited ITO thin film,” J. Korean Oil Chem. Soc., Vol. 34, No. 4, pp. 705-716, (2017).
  12. F. Takashi, M. Hiroyuki, “Electronic Properties of the Interface between Si and $TiO_2$ Deposited at Very Low Temperatures,” Jpn. J. Appl. Phys., Vol. 25, No. 9R, pp. 1288, (1986). https://doi.org/10.1143/JJAP.25.1288
  13. B. T. Luong, J.-W. Oh, J. Choi, N. Kim, “A Simple Method for Fabricating a Mach-Zehnder Type Waveguide Using Sol-Gel Derived Photopatternable Hybrid Materials for Optical Biosensors,” J. Nanosci. Nanotechnol., Vol. 11, No. 5, pp. 4546-4550, (2011). https://doi.org/10.1166/jnn.2011.3679
  14. W.-S. Kim, K. B. Yoon, B.-S. Bae, "Nanopatterning of photonic crystals with a photocurable silica-titania organic-inorganic hybrid material by a UV-based nanoimprint technique," J. Mater. Chem. Vol. 15, No. 42, pp. 4535-4539, (2005). https://doi.org/10.1039/b509622g
  15. D. Macwan, P. N. Dave, S. Chaturvedi, “A review on nano-$TiO_2$ sol-gel type syntheses and its applications,” J. Mater. Sci., Vol. 46, No. 11, pp. 3669-3686, (2011). https://doi.org/10.1007/s10853-011-5378-y
  16. J. Gilberts, A. H. A. Tinnemans, M. P. Hogerheide, T. P. M. Koster, “UV Curable Hard Transparent Hybrid Coating Materials on Polycarbonate Prepared by the Sol-Gel Method,” J. Sol-Gel Sci. Technol., Vol. 11, No. 2, pp. 153-159, (1998). https://doi.org/10.1023/A:1008693413965
  17. M. E. L. Wouters, D. P. Wolfs, M. C. van der Linde, J. H. P. Hovens and A. H. A. Tinnemans, “Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol-gel method,” Prog. Org. Coat., Vol. 51, No. 4, pp. 312-319, (2004). https://doi.org/10.1016/j.porgcoat.2004.07.020
  18. Y. Gao, Y. Masuda, K. Koumoto, “Light-Excited Superhydrophilicity of Amorphous $TiO_2$ Thin Films Deposited in an Aqueous Peroxotitanate Solution,” Langmuir, Vol. 20, No. 8, pp. 3188-3194, (2004). https://doi.org/10.1021/la0303207
  19. Y. Castro, M. Aparicio, R. Moreno, A. Duran, “Silica-Zirconia Sol-Gel Coatings Obtained by Different Synthesis Routes,” J. Sol-Gel Sci. Technol., Vol. 35, No. 1, pp. 41-50, (2005). https://doi.org/10.1007/s10971-005-3213-0