Browse > Article
http://dx.doi.org/10.12925/jkocs.2018.35.1.80

ZrO2/TiO2/Organosilane Hybrid Composites via Low Temperature Sol-Gel Process for Hard and Transparent Coating  

Lee, Su-Hyeon (Department of Chemistry, Sahmyook University)
Choi, Jongwan (Department of Chemistry, Sahmyook University)
Publication Information
Journal of the Korean Applied Science and Technology / v.35, no.1, 2018 , pp. 80-88 More about this Journal
Abstract
In this study, we prepared hybrid composites by using low temperature sol-gel process for transparent and hard coating film. The hybrid composites consist of $ZrO_2/TiO_2/organosilane$, of which organosilane was introduced 3-(trimethoxysilyl)propyl methacrylate due to the role of a photocurable ceramic material for low temperature process. The ceramic composites with various composition ratios were coated on a polycarbonate substrate using a sol-gel process of low temperature process, and characterized optical and mechanical properties of coated thin film. The transparencies of coated thin films were 97.5 % or more, and the pencil hardness were 9H or more. In the case of the ZTS-2-1, the nano-indentation hardness was measured at the highest value of 1.14 GPa.
Keywords
low temperature process; Sol-Gel method; Photocurable; hybrid composites; $ZrO_2/TiO_2/organosilane$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Gilberts, A. H. A. Tinnemans, M. P. Hogerheide, T. P. M. Koster, “UV Curable Hard Transparent Hybrid Coating Materials on Polycarbonate Prepared by the Sol-Gel Method,” J. Sol-Gel Sci. Technol., Vol. 11, No. 2, pp. 153-159, (1998).   DOI
2 M. Nogami, “Glass preparation of the $ZrO_2$-$SiO_2$ system by the sol-gel process from metal alkoxides,” J. Non-Cryst. Solids, Vol. 69, No. 2, pp. 415-423, (1985).   DOI
3 T. Van Gestel, C. Vandecasteele, A. Buekenhoudt, C. Dotremont, J. Luyten, R. Leysen, B. Van der Bruggen, G. Maes, “Alumina and titania multilayer membranes for nanofiltration: preparation, characterization and chemical stability,” J. Membr. Sci., Vol. 207, No. 1, pp. 73-89, (2002).   DOI
4 M. E. L. Wouters, D. P. Wolfs, M. C. van der Linde, J. H. P. Hovens and A. H. A. Tinnemans, “Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol-gel method,” Prog. Org. Coat., Vol. 51, No. 4, pp. 312-319, (2004).   DOI
5 Y. Gao, Y. Masuda, K. Koumoto, “Light-Excited Superhydrophilicity of Amorphous $TiO_2$ Thin Films Deposited in an Aqueous Peroxotitanate Solution,” Langmuir, Vol. 20, No. 8, pp. 3188-3194, (2004).   DOI
6 Y. Castro, M. Aparicio, R. Moreno, A. Duran, “Silica-Zirconia Sol-Gel Coatings Obtained by Different Synthesis Routes,” J. Sol-Gel Sci. Technol., Vol. 35, No. 1, pp. 41-50, (2005).   DOI
7 J. B. Wachtman, W. R. Cannon, M. J. Matthewson, Mechanical properties of ceramics. John Wiley & Sons, (2009).
8 V. Fiorentini, G. Gulleri, "Theoretical evaluation of zirconia and hafnia as gate oxides for Si microelectronics, Phys. Rev. Lett., Vol. 89, No. 26, pp. 266101, (2002).   DOI
9 J.-Y. Hwang, H.-S. Hahm, “Preparation of CuO-$CeO_2$ mixed oxide catalyst by sol-gel method and its application to preferential oxidation of CO,” J. Korean Oil Chem. Soc., Vol. 34, No. 4, pp. 883-891, (2017).
10 H. Sato, K. Yamada, G. Pezzotti, M. Nawa, S. Ban, “Mechanical properties of dental zirconia ceramics changed with sandblasting and heat treatment,” Dent. Mate. J., Vol. 27, No. 3, pp. 408-414, (2008).   DOI
11 J. Liu, H. Yan, K. Jiang, "Mechanical properties of graphene platelet-reinforced alumina ceramic composites," Ceram. Int. Vol. 39, No. 6, pp. 6215-6221, (2013).   DOI
12 E. J. Go, S. H. Kim, “Synthesis of ITO(Indium Titanium Oxide) particle by sol-gel and investigation on light transmittance of deposited ITO thin film,” J. Korean Oil Chem. Soc., Vol. 34, No. 4, pp. 705-716, (2017).
13 S. C. Pillai, P. Periyat, R. George, D. E. McCormack, M. K. Seery, H. Hayden, J. Colreavy, D. Corr, S. J. Hinder, “Synthesis of high-temperature stable anatase $TiO_2$ photocatalyst,” J. Phys. Chem. C, Vol. 111, No. 4, pp. 1605-1611, (2007).   DOI
14 M. S. Lee, N. J. Jo, “Abrasion-resistance and Optical Properties of Sol-Gel Derived Organic-Inorganic Hybrid Coatings,” J. Korean Ind. Eng. Chem., Vol. 12, No. 6, pp. 643-648, (2001).
15 X. Cao, R. Vassen, D. Stoever, “Ceramic materials for thermal barrier coatings,” J. Eur. Ceram. Soc., Vol. 24, No. 1, pp. 1-10, (2004).   DOI
16 F. Takashi, M. Hiroyuki, “Electronic Properties of the Interface between Si and $TiO_2$ Deposited at Very Low Temperatures,” Jpn. J. Appl. Phys., Vol. 25, No. 9R, pp. 1288, (1986).   DOI
17 B. T. Luong, J.-W. Oh, J. Choi, N. Kim, “A Simple Method for Fabricating a Mach-Zehnder Type Waveguide Using Sol-Gel Derived Photopatternable Hybrid Materials for Optical Biosensors,” J. Nanosci. Nanotechnol., Vol. 11, No. 5, pp. 4546-4550, (2011).   DOI
18 D. Macwan, P. N. Dave, S. Chaturvedi, “A review on nano-$TiO_2$ sol-gel type syntheses and its applications,” J. Mater. Sci., Vol. 46, No. 11, pp. 3669-3686, (2011).   DOI
19 W.-S. Kim, K. B. Yoon, B.-S. Bae, "Nanopatterning of photonic crystals with a photocurable silica-titania organic-inorganic hybrid material by a UV-based nanoimprint technique," J. Mater. Chem. Vol. 15, No. 42, pp. 4535-4539, (2005).   DOI