DOI QR코드

DOI QR Code

Structural Analysis of [Cu(II)-amyloidogenic peptide] Complexes

  • Cha, Eugene (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Seo, Jae-Hong (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Kim, Ho-Tae (Department of Applied Chemistry, Kumoh National Institute of Technology)
  • 투고 : 2018.01.09
  • 심사 : 2018.02.07
  • 발행 : 2018.03.30

초록

Studies on the interactions of amyloidogenic proteins with trace metals, such as copper, have indicated that the metal ions perform a critical function in the early oligomerization process. Herein, we investigate the effects of Cu(II) ions on the active sequence regions of amyloidogenic proteins using electrospray ionization mass spectrometry (ESI-MS) and collision induced dissociation tandem MS (CID-MS/MS). We chose three amyloidogenic peptides NNQQNY, LYQLEN, and VQIVYK from yeast prion like protein Sup35, insulin chain A, and tau protein, respectively. [Cu-peptide] complexes for all three peptides were observed in the mass spectra. The mass spectra also show that increasing Cu(II) concentrations decrease the population of existing peptide oligomers. The tandem mass spectrum of NNQQNY shows preferential binding for the N-terminal region. All three peptides are likely to appear to be in a Cu-monomer-monomer (Cu-M-M) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.

키워드

E1MPSV_2018_v9n1_17_f0001.png 이미지

Figure 1. Comparison of full mass spectra at a) 1:0, b) 1:0.1, and c) 1:1 ratios of [peptide]:[Cu] of the active sequences NNQQNY. Allpeaks with m/z values greater than 1000 were magnified by a factor of 20. Magnified NNQQNY [2M+H]1+ peaks are presented asinsets.

E1MPSV_2018_v9n1_17_f0002.png 이미지

Figure 2. MS/MS spectra of singly and doubly charged monomer complexes of NNQQNY, LYQLEN, and VQIVYK peptides with abound Cu(II) ion. [M+Cu-H]1+ of a) NNQQNY, c) LYQLEN, and e) VQIVYK. [M+Cu]2+ of b) NNQQNY, d) LYQLEN, and f)VQIVYK. Peaks labeled -18 likely result from the loss of an H2O moiety. Peaks labeled -28 result from the loss of an additional COmoiety and would conventionally be labeled as an ions. Peaks labeled -44 likely result from the loss of a CO2 moiety. bt fragments areexpressed in blue and bold and yn fragments are expressed in red and bold.

E1MPSV_2018_v9n1_17_f0003.png 이미지

Figure 3. MS/MS spectra of singly and doubly charged dimer complexes of NNQQNY with a bound Cu(II) ion. a) [2M+Cu-H]1+ and b)[2M+Cu]2+. MS/MS/MS spectra of (bt+Cu) 1+ fragments observed in b) spectrum. c) (b5+Cu) 1+ and d) (b4+Cu) 1+.

Table 1. Summary of the nomenclature used for MS/MS spectra. Italics indicate conventional notation as proposed by Roepstorff andFohlman.28 Non-italicized bt would conventionally be represented as a neutral species [bt]0. Non-italicized yn would be represented as[yn”-2H]0.

E1MPSV_2018_v9n1_17_t0001.png 이미지

Table 2. Comparison of [Cu-peptide] MS/MS fragmentationpatterns for NNQQNY, LYQLEN, and VQIVYK.

E1MPSV_2018_v9n1_17_t0002.png 이미지

참고문헌

  1. Wogulis, M. J. Neurosci. 2005, 25, 1071. https://doi.org/10.1523/JNEUROSCI.2381-04.2005
  2. Jarrett, J. T.; Lansbury, P. T. Cell 1993, 73, 1055. https://doi.org/10.1016/0092-8674(93)90635-4
  3. Wagoner, V. A.; Cheon, M.; Chang, I.; Hall, C. K. Proteins Struct. Funct. Bioinforma. 2014, 82, 1469. https://doi.org/10.1002/prot.24515
  4. Jobling, M. F.; Stewart, L. R.; White, A. R.; McLean, C.; Friedhuber, A.; Maher, F.; Beyreuther, K.; Masters, C. L.; Barrow, C. J.; Collins, S. J.; Cappai, R. J. Neurochem. 2002, 73, 1557. https://doi.org/10.1046/j.1471-4159.1999.0731557.x
  5. Stefani, M. Prog. Neurobiol. 2012, 99, 226. https://doi.org/10.1016/j.pneurobio.2012.03.002
  6. Demuro, A.; Mina, E.; Kayed, R.; Milton, S. C.; Parker, I.; Glabe, C. G. J. Biol. Chem. 2005, 280, 17294. https://doi.org/10.1074/jbc.M500997200
  7. Teng, P. K.; Eisenberg, D. Protein Eng. Des. Sel. 2009, 22, 531. https://doi.org/10.1093/protein/gzp037
  8. Zou, R.; Wang, Q.; Wu, J.; Wu, J.; Schmuck, C.; Tian, H. Chem. Soc. Rev. 2015, 44, 5200. https://doi.org/10.1039/C5CS00234F
  9. Abelein, A.; Graslund, A.; Danielsson, J. Proc. Natl. Acad. Sci. 2015, 112, 5407. https://doi.org/10.1073/pnas.1421961112
  10. Li, H.; Ha, E.; Donaldson, R. P.; Jeremic, A. M.; Vertes, A. Anal. Chem. 2015, 87, 9829. https://doi.org/10.1021/acs.analchem.5b02217
  11. Sanchez-Lopez, C.; Cortes-Mejia, R.; Miotto, M. C.; Binolfi, A.; Fernández, C. O.; Del Campo, J. M.; Quintanar, L. Inorg. Chem. 2016.
  12. Gomes, C. M.; Wittung-Stafshede, P. Protein folding and metal ions: mechanisms, biology and disease, CRC Press: Boca Raton, 2011.
  13. Dong, J.; Bloom, J. D.; Goncharov, V.; Chattopadhyay, M.; Millhauser, G. L.; Lynn, D. G.; Scheibel, T.; Lindquist, S. J. Biol. Chem. 2007, 282, 34204. https://doi.org/10.1074/jbc.M704952200
  14. Brader, M. L.; Borchardt, D.; Dunn, M. F. Biochemistry (Mosc.) 1992, 31, 4691. https://doi.org/10.1021/bi00134a023
  15. Krishna, N. R. S.; Pattabhi, V.; Rajan, S. S. Protein Pept. Lett. 2011, 18, 457. https://doi.org/10.2174/092986611794927929
  16. Xu, H.; Finkelstein, D. I.; Adlard, P. A. Front. Aging Neurosci. 2014, 6, 121.
  17. Ma, Q. -F.; Li, Y. -M.; Du, J. -T.; Kanazawa, K.; Nemoto, T.; Nakanishi, H.; Zhao, Y. -F. Biopolymers 2005, 79, 74. https://doi.org/10.1002/bip.20335
  18. Calabrese, M. F.; Miranker, A. D. Prion 2009, 3, 1. https://doi.org/10.4161/pri.3.1.8601
  19. Pedersen, J. T.; Teilum, K.; Heegaard, N. H. H.; Ostergaard, J.; Adolph, H. -W.; Hemmingsen, L. Angew. Chem. Int. Ed. 2011, 50, 2532. https://doi.org/10.1002/anie.201006335
  20. Gamez, P.; Caballero, A. B. AIP Adv. 2015, 5, 92503. https://doi.org/10.1063/1.4921314
  21. Derrick, J. S.; Lee, J.; Lee, S. J. C.; Kim, Y.; Nam, E.; Tak, H.; Kang, J.; Lee, M.; Kim, S. H.; Park, K.; Cho, J.; Lim, M. H. J. Am. Chem. Soc. 2017, 139, 2234. https://doi.org/10.1021/jacs.6b09681
  22. Seo, J. -H.; Cha, E.; Kim, H. -T. Int. J. Mass Spectrom. 2017, 415, 55. https://doi.org/10.1016/j.ijms.2017.02.005
  23. Mold, M.; Ouro-Gnao, L.; Wieckowski, B. M.; Exley, C. Sci. Rep. 2013, 3, 1256. https://doi.org/10.1038/srep01256
  24. Mayes, J.; Tinker-Mill, C.; Kolosov, O.; Zhang, H.; Tabner, B. J.; Allsop, D. J. Biol. Chem. 2014, 289, 12052. https://doi.org/10.1074/jbc.M113.525212
  25. Hane, F.; Tran, G.; Attwood, S. J.; Leonenko, Z. PLoS One 2013, 8, e59005. https://doi.org/10.1371/journal.pone.0059005
  26. Pedersen, J. T.; Ostergaard, J.; Rozlosnik, N.; Gammelgaard, B.; Heegaard, N. H. H. J. Biol. Chem. 2011, 286, 26952. https://doi.org/10.1074/jbc.M111.220863
  27. Belczyk-Ciesielska, A.; Zawisza, I. A.; Mital, M.; Bonna, A.; Bal, W. Inorg. Chem. 2014, 53, 4639. https://doi.org/10.1021/ic5003176
  28. Roepstorff, P.; Fohlman, J. Biomed. Mass Spectrom. 1984, 11, 601. https://doi.org/10.1002/bms.1200111109
  29. Hunt, D. F.; Yates, J. R.; Shabanowitz, J.; Winston, S.; Hauer, C. R. Proc. Natl. Acad. Sci. U. S. A. 1986, 83, 6233. https://doi.org/10.1073/pnas.83.17.6233
  30. Bleiholder, C.; Dupuis, N. F.; Wyttenbach, T.; Bowers, M. T. Nat. Chem. 2011, 3, 172. https://doi.org/10.1038/nchem.945
  31. Timari, S.; Cerea, R.; Varnagy, K. J. Inorg. Biochem. 2011, 105, 1009. https://doi.org/10.1016/j.jinorgbio.2011.04.007