DOI QR코드

DOI QR Code

Cs-흡착 CHA-Cs 및 CHA-PCFC-Cs 제올라이트계와 Sr-흡착 4A-Sr 및 BaA-Sr 제올라이트계의 고온 열분해

High-temperature Thermal Decomposition of Cs-adsorbed CHA-Cs and CHA-PCFC-Cs Zeolite System, and Sr-adsorbed 4A-Sr and BaA-Sr Zeolite System

  • 투고 : 2017.08.17
  • 심사 : 2017.09.18
  • 발행 : 2018.03.30

초록

본 연구는 고온 열분해를 통한 Cs, Sr 등 고방사성핵종의 고정화를 위하여 각각 Cs이 흡착된 CHA (K형 Chabazite zeolite)-Cs, CHA-PCFC (potassium cobalt ferrocyanide)-Cs 및 Sr이 흡착된 4A-Sr, BaA-Sr 등의 제올라이트 계에서 TGA 및 XRD에 의한 배소 온도 변화에 따른 상변환을 고찰하였다. CHA-Cs 제올라이트 계의 경우 $900^{\circ}C$ 까지는 CHA-Cs의 형태를 유지하고 있으며, $1,000^{\circ}C$에서 무정형 단계를 거친 후 $1,100^{\circ}C$에서 pollucite ($CsAlSi_2O_6$)로 재결정 되었다. 반면에 CHA-CFC-Cs 제올라이트 계는 $700^{\circ}C$ 까지는 CHA-PCFC-Cs 형태를 유지하고 있으나, $900{\sim}1,000^{\circ}C$ 사이에서 구조가 파괴되어 무정형으로 상변환된 후 $1,100^{\circ}C$에서 pollucite로 재결정 되었다. 한편 4A-Sr 제올라이트 계의 경우 $700^{\circ}C$ 까지는 4A-Sr의 구조를 유지하고 있으며, $800^{\circ}C$에서 무정형으로 상변환 된 다음 $900^{\circ}C$에서는 Sr-feldspar ($SrAl_2Si_2O_8$, hexagonal)으로, $1,100^{\circ}C$에서 $SrAl_2Si_2O_8$ (triclinic)로 재결정 되었다. 그러나 BaA-Sr 제올라이트 계의 경우는 $500^{\circ}C$ 이하부터 구조가 파괴되기 시작하여 $500{\sim}900^{\circ}C$에서 무정형 단계를 거친 후, $1,100^{\circ}C$에서 Ba/Sr-feldspar ($Ba_{0.9}Sr_{0.1}Al_2Si_2O_8$$Ba_{0.5}Sr_{0.5}Al_2Si_2O_8$ 공존)로 재결정 되었다. 상기 제올라이트 계 모두 온도 증가에 따라 탈수/(분해)${\rightarrow}$ 무정형${\rightarrow}$ 재결정의 단계를 거쳐 광물상으로 재결정 되었으며, 고온 열분해 과정에서의 Cs 및 Sr의 휘발성, 침출성 등의 추가 연구가 요구되지만 각 제올라이트 계에 흡착된 Cs 및 Sr은 pollucite나 Sr-feldspar, Ba/Sr-feldspar 등으로 광물화 하여 Cs과 Sr을 배소체/(고화체) 내에 완전히 고정화 시킬 수 있을 것으로 보인다.

For the immobilization of high-radioactive nuclides such as Cs and Sr by high-temperature thermal decomposition, this study was carried out to investigate the phase transformation with calcined temperature by using TGA (thermogravimetric analysis) and XRD (X-ray diffraction) in the Cs-adsorbed CHA (chabazite zeolite of K type)-Cs and CHA-PCFC (potassium cobalt ferrocyanide)-Cs zeolite system, and Sr-adsorbed 4A-Sr and BaA-Sr zeolite system, respectively. In the case of CHA-Cs zeolite system, the structure of CHA-Cs remained at up to $900^{\circ}C$ and recrystallized to pollucite ($CsAlSi_2O_6$) at $1,100^{\circ}C$ after undergoing amorphous phase at $1,000^{\circ}C$. However, the CHA-CFC-Cs zeolite system retained the CHA-PCFC-Cs structure up to $700^{\circ}C$, but its structure collapsed in $900{\sim}1,000^{\circ}C$, and then transformed to amorphous phase, and recrystallized to pollucite at $1,100^{\circ}C$. In the case of 4A-Sr zeolite system, on the other hand, the structure of 4A-Sr maintained up to $700^{\circ}C$ and its phase transformed to amorphous at $800^{\circ}C$, and recrystallized to Sr-feldspar ($SrAl_2Si_2O_8$, hexagonal) at $900^{\circ}C$ and to $SrAl_2Si_2O_8$ (triclinic) at $1,100^{\circ}C$. However, the BaA-Sr zeolite system structure began to break down at below $500^{\circ}C$, and then transformed to amorphous phase in $500{\sim}900^{\circ}C$ and recrystallized to Ba/Sr-feldspar (coexistence of $Ba_{0.9}Sr_{0.1}Al_2Si_2O_8$ and $Ba_{0.5}Sr_{0.5}Al_2Si_2O_8$) at $1,100^{\circ}C$. All of the above zeolite systems recrystallized to mineral phase through the dehydration/(decomposition) ${\rightarrow}$ amorphous ${\rightarrow}$ recrystallization with increasing temperature. Although further study of the volatility and leachability of Cs and Sr in the high-temperature thermal decomposition process is required, Cs and Sr adsorbed in each zeolite system are mineralized as pollucite, Sr-feldspar and Ba/Sr-feldspar. Therefore, Cs and Sr seen to be able to completely immobilize in the calcining wasteform/(solidified wasteform).

키워드

참고문헌

  1. Nuclear Emergency Response Headquarters Government of Japan, June 18 2011. "Report of Japanese government to the IAEA Ministerial Conference on nuclear safety-The accident at TEPCO's Fukushima nuclear power stations", Accessed August 17 2013. Available from: https://japan.kantei.go.jp/kan/topics/201106/iaea_houkokusho_e.html
  2. Side event by government of Japan at 56th IAEA General Conference, September 17 2012. "Current status of Fukushima Daiichi nuclear power station", Available from: http://www.nsr.go.jp/archive/nisa/english/files/P-3-1.pdf.
  3. Tokyo Electric Power Company, March 29 2013. "Overview of the Multi-nuclide Removal Equipment (ALPS) at Fukushima Daiichi Nuclear Power Station", Tokyo Electric Power Company, Accessed August 17 2015. Available from: http://www.tepco.co.jp/en/nu/fukushima-np/handouts/2013/images/handouts_130329_01-e.pdf.
  4. Tokyo Electric Power Company, March 26 2013. "Nuclide analysis results of water at water treatment facility", Tokyo Electric Power Company, Accessed January 14 2016. Available from: http://www.tepco.co.jp/en/nu/fukushima-np/images/handouts_ 120326_ 08_e.pdf.
  5. H. Rindo,"Current status and perspective of Fukushima accident remediation", 10th Anniversary of Korean Radioactive Waste Society, Jeju, Korea, October 17 (2013).
  6. Y. Kani, M. Kamosida, and D. Watanabe,"Removal of radionuclides from wastewater at Fukushima Daiichi nuclear power plant: Desalination and adsorption methods", WM2013 Conference, February 24 - 28, 2013, Phoenix, Arizona, USA (2013).
  7. Wikipedia, April 17 2011. "Fukushima disaster cleanup", Accessed August 17 2015. Available from: http://en.wikipedia.org/wiki/Fukushima_disaster_ cleanup.
  8. April 22 2014. "Status of contaminated water treatment and tritium at Fukushima Daiichi nuclear power station", Tokyo Electric Power Company, Accessed August 11, 2015. Available from: http://www.meti.go.jp/earthquake /nuclear/pdf/140424/140424_02_008.pdf.
  9. T. Ihara,"Decommissioning at Fukushima-Daiichi NPP (nuclear power plant)", Nuclear decommissioning & waste management summit, 3rd edition, London, UK, February 24-25 (2016).
  10. Tokyo Electric Power Company, Press release Feb. 09 2015, "Situation of storing and treatment of accumulated water including highly concentrated radioactive materials at Fukushima Daiichi Nuclear Power Station (197th release)", Available from: http;//www.teppco.co.jp/en/press/corp-com/release/2015/12498123_6844.html.
  11. E.H. Lee, K.Y. Lee, K.W. Kim, I.S. Kim, D.Y. Chung, and J.K. Moon, "Removal of Cs by adsorption with IE911 (crystalline silicotitanate) from high-radioactive seawater waste", J. Nucl. Fuel Cycle Waste Technol., 13(3), 171-180 (2015). https://doi.org/10.7733/jnfcwt.2015.13.3.171
  12. E.H. Lee, K.Y. Lee, K.W. Kim, I.S. Kim, D.Y. Chung, J.K. Moon, and J.W. Choi, "Adsorption removal of Sr by Barium impregnated 4A zeolite (BaA) from high-radioactive seawater waste", J. Nucl. Fuel Cycle Waste Technol., 14(2), 101-112 (2016). https://doi.org/10.7733/jnfcwt.2016.14.2.101
  13. E.H. Lee, K.Y. Lee, K.W. Kim, H.J. Kim, I.S. Kim, D.Y. Chung, J.K. Moon, and J.W. Choi, "Removal of I by adsorption with AgX (Ag-impregnated X zeolite) from high-radioactive seawater waste", J. Nucl. Fuel Cycle Waste Technol., 14(3), 223-234 (2016). https://doi.org/10.7733/jnfcwt.2016.14.3.223
  14. H. Mimura and T. Kanno, "Distribution and fixation of cesium and strontium in zeolite A and Chabazite", J. Nucl. Sci. & Tech., 22(4), 284-291 (1985). https://doi.org/10.1080/18811248.1985.9735658
  15. T. Kanno, H. Mimura, and T. Kitamura, "Processing of radioactive waste solution with zeolite ( I ), Thermal transformation of Na, Cs, Sr type zeolite", J. Atomic Energy Society of Japan, 18(8), 518-523 (1976). https://doi.org/10.3327/jaesj.18.518
  16. C. Kosanovic, B. Subotic, and I. Smit, "Thermally induced phase transformation in cation exchanged zeolite 4A, 13X and synthetic mordenite and their amorphous derivatives obtained by mechanochemical treatment", Thermochimica Acta, 317, 25-37 (1998). https://doi.org/10.1016/S0040-6031(98)00353-0
  17. H. Mimura, M. Shibata, and K. Akiba, "Hydrothermal reaction of zeolites loaded with Cs or Sr", J. Nucl. Sci. & Tech., 27(2), 167-173 (1990). https://doi.org/10.1080/18811248.1990.9731165
  18. H. Mimura and K. Akiba, "Adsorption behavior of cesium and strontium on synthetic zeolite P", J. Nucl. Sci. and Tech., 30(5), 436-443 (1993). https://doi.org/10.1080/18811248.1993.9734500
  19. H. Mimura, F. Tachibana, and K. Akiba, "Distribution and fixation of cesium in Ferrierites", RECORD 91, 2, 796-801 (1991).
  20. Y. Ikarashi, R.S. Masud, H. Mimura, E. Ishizaki, and M. Matsukura, "Development of stable solidification method for insoluble ferrocyanides-13170", WM2013 Conference. February 24-28, 2013, Phoenix, USA.
  21. J.M. Kim, K.Y. Lee, K.W. Kim, E.H. Lee, D.Y. Chung, J.K. Moon, and J.H. Hyun, "Study of composite adsorbent synthesis and characterization for the removal of Cs in the high-salt and high-radioactive wastewater", J. Nucl. Fuel Cycle Waste Technol., 15(1), 1-14 (2017). https://doi.org/10.7733/jnfcwt.2017.15.1.1
  22. D.H. de Boer and G. Crosby, "Evaluating the potential of SEM/EDS analysis for fingerprinting suspended sediment derived from two contrasting topsoils", Catena, 24(4), 243-258 (1995). https://doi.org/10.1016/0341-8162(95)00029-4
  23. J. Lehto and S. Haukka, "Thermal decomposition of potassium cobalt hexacyanoferrate (II)", Thermochimica Acta, 160(2), 343-347 (1990). https://doi.org/10.1016/0040-6031(90)80275-4
  24. Wikipedia, June 21 2017. Available from: https://en.wikipedia.org/wiki/Barium and https://en.wikipedia.org/wiki/Strotium.
  25. J.A. Dean, "Lange's Handbook of Chemistry", 12th Edition, McGraw-Hill Book Company (1979).
  26. D.T. Bostick, S.M. Depaoli, and B. Guo, "A comparative evaluation of IONSIV IE-911 and chabazite zeolite for the removal of Darion strontium and cesium from wastewater", ORNL/CP-99431 (1998).
  27. E.H. Borai, R. Harjula, L. Malinen, and A. Paajanen, "Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals", J. Hazardous Mat., 172(1), 416-422 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.033
  28. S.H. Shim, A. Navrotsky, T. R. Gaffney, and J. E. MacDougall, "Chabazite: Energetics of hydration, enthalpy of formation, and effect of cations on stability", American Mineralogist, 84, 1879-21882 (1999).
  29. C.G. Saxton, A. Kruth, M. Castro, P.A. Wright, and R.F. Howe, "Xenon adsorption in synthetic chabazite zeolites", Microporous and Mesoporous Materials, 129(1-2), 68-73 (2010). https://doi.org/10.1016/j.micromeso.2009.08.034
  30. P. Ptacek, F. Soukal, T. Opravil, E. Bartonickova, and J. Wasserbauer, "The formation of feldspar strontian ($SrAl_{2}Si_{2}O_{8}$) via ceramic route: Reaction mechanism, kinetics and thermodynamic of the process", Ceramics Internat., 42, 8170-8178 (2016). https://doi.org/10.1016/j.ceramint.2016.02.024