DOI QR코드

DOI QR Code

Production of Anti-dementia Acetylcholinesterase Inhibitors from the Wild Yeasts Saccharomyces cerevisiae WJSL0113 and Wickerhamomyces anomalus JSF0128

  • Kim, Ji-Yoon (Department of Biomedicinal Science and Biotechnology, Paichai University) ;
  • Lee, Sang-Yeop (Department of Biomedicinal Science and Biotechnology, Paichai University) ;
  • Han, Sang-Min (Department of Biomedicinal Science and Biotechnology, Paichai University) ;
  • Lee, Jong-Soo (Department of Biomedicinal Science and Biotechnology, Paichai University)
  • Received : 2018.10.30
  • Accepted : 2018.11.27
  • Published : 2018.12.01

Abstract

In this paper, the screening of potent acetylcholinesterase (AChE) inhibitor - producing yeasts from wild yeasts and the condition for the production of anti-dementia AChE inhibitors are described. Among one hundred and seven non-pathogenic wild yeast strains from the waters and soils of three main rivers in Daejeon metropolitan city and midstream of Yeongsangang river in Sangju, sporogenous Saccharomyces cerevisiae WJSL0113 and asporogenous Wickerhamomyces anomalus JSF0128 were selected as useful strains for the production of potent AChE inhibitors. The AChE inhibitors of S. cerevisiae WJSL0113 and W. anomalus JSF0128 had a maximum yield when they were incubated in yeast extract-peptone-dextrose media (pH 6.0 in S. cerevisiae WJSL0113 and pH 5.0 in W. anomalus JSF0128) for 18 hr at $30^{\circ}C$, respectively.

Keywords

GNHHDL_2018_v46n4_447_f0001.png 이미지

Fig. 1. Phylogenetic tree of anti-dementia acetylcholinesterase inhibitor-producing yeasts, Saccharomyces cerevisiae WJSL0113 and Wickerhamomyces JSF0128, isolated from freshwater based on the nucleotide sequences of large subunit 28S ribosomal DNA. The tree was generated by the neighbor-joining method, using MEGA7

GNHHDL_2018_v46n4_447_f0002.png 이미지

Fig. 2. Effect of cultural time on the acetylcholinesterase inhibitory activity of Saccharomyces cerevisiae WJSL0113 (▭ ) and Wickerhamomyces anomalus JSF0128 (▅)

GNHHDL_2018_v46n4_447_f0003.png 이미지

Fig. 3. Effect of cell-free extract from acetylcholinesterase inhibitor-producing Saccharomyces cerevisiae WJSL0113 on the apoptotic inhibition in pCT105 induced PC12 cell. C (-), not pCT105 induced PC12 cell; C (+), not cell-free extract treated PC12 cell

Table 1. Acetylcholineseterase inhibitory activities on wild yeasts from three main rivers in Daejeon metropolitan city and Yeongsangang river in Sangju city, Korea

GNHHDL_2018_v46n4_447_t0001.png 이미지

Table 2. Characteristics of the selected two wild yeasts, Saccharomyces cerevisiae WJSL0113 and Wickerhamomyces anomalus JSF0128

GNHHDL_2018_v46n4_447_t0002.png 이미지

References

  1. Dugu M, Neugroschl J, Sewell M, Marin D. Review of dementia. Mt Sinai J Med 2003;70:45-53.
  2. Lee EN, Song JH, Lee JS. Screening of a potent antidementia acetylcholinesterase inhibitorcontaining fruits and optimal extraction conditions. Korean J Food Nutr 2010;23:318-23.
  3. Lee JS, Min GH, Lee JS. Nutritional and physicochemical characteristics of the antidementia acetylcholinesterase-inhibiting methanol extracts from Umbillicaria esculenta. Mycobiology 2009;37:203-6. https://doi.org/10.4489/MYCO.2009.37.3.203
  4. Kwak JH, Jeong CH, Kim JH, Choi GN, Shin YH, Lee SC, Cho SH, Choi SG, Heo HJ. Acetylcholinesterase inhibitory effect of green tea extracts according to storage condition. Korean J Food Sci Technol 2009;41:435-40.
  5. Jang CH, Eun JS, Park HW, Seo SM, Yan JH, Leem KH, Oh SH, Oh CH, Baek NI, Kim DK. An acetylcholinesterase inhibitor from the leaves of Securinega suffruticosa. Korean J Pharmacogn 2003;34:14-7.
  6. Ahmad I, Anis I, Malik A, Nawaz SA, Choudhary MI. Cholinesterase inhibitory constituents from Onosma hispida. Chem Pharm Bull (Tokyo) 2003;51:412-4. https://doi.org/10.1248/cpb.51.412
  7. Tang XC, Han YF. Pharmacological profile of huperzine A, a novel acetylcholinesterase inhibitor from Chinese herb. CNS Drug Rev 1999;5:281-300.
  8. Li L, Tsao R, Yang R, Liu C, Zhu H, Young JC. Polyphenolic profiles and antioxidant activities of heartnut (Juglans ailanthifolia var. cordiformis) and Persian walnut (Juglans regia L.). J Agri Food Chem 2006;54:8033-40. https://doi.org/10.1021/jf0612171
  9. Seo DS, Jang JH, Kim NM, Lee JS. Optimal extraction condition and characterization of antidementia acetylcholinesterase inhibitor from job's tears (Coix Lachrymajobi L.). Korean J Med Crop Sci 2009;17:434-8.
  10. Lee JS, Lee SH, Kwon SJ, Ahn C, Yoo JY. Enzyme activities and physiological functionality of yeasts from traditional Meju. Korean J Appl Microbiol Biotechnol 1997;25:448-53.
  11. Hyun SH, Han SM, Lee JS. Isolation and physiological functionality of yeasts from wild flowers in Seonyudo of Gogunsanyeoldo, Jeollabuk-do, Korea. Kor J Mycol 2014;42:201-6. https://doi.org/10.4489/KJM.2014.42.3.201
  12. Han SM, Hyun SH, Lee JS. Isolation and identification of yeasts from wild flowers in Deogyu mountain and their physiological functionalities. Kor J Mycol 2015;43:47-52. https://doi.org/10.4489/KJM.2015.43.1.47
  13. Hyun SH, Mun HY, Lee HB, Kim HK, Lee JS. Isolation of yeasts from wild flowers in Gyonggi-do province and Jeju island in Korea and the production of anti-gout xanthine oxidase inhibitor. Korean J Microbiol Biotechnol 2013;41:383-90. https://doi.org/10.4014/kjmb.1309.09002
  14. Han SM, Lee JS. Production and its anti-hyperglycemic effects of gamma-aminobutyric acid from the wild yeast strain Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1. Mycobiology 2017;45:199-203. https://doi.org/10.5941/MYCO.2017.45.3.199
  15. Bae SM, Han SM, Lee JS. Screening of anti-inflammatory compound-producing wild yeasts and their microbiological characteristics. Kor J Mycol 2017;45:212-23.
  16. Han SM, Lee SY, Kim HK. Isolation and diversity of wild yeasts from the waters and bank soils of Daejeoncheon, Gapcheon, and Yudeungcheon in Daejeon metropolitan city, Korea. Kor J Mycol 2017;45:259-69.
  17. Han SM, Lee SY, Kim HK, Lee JS. Characterization of wild yeasts isolated from leaves obtained from Mt. Daedun and Mt. Chilgap, Korea. Kor J Mycol 2017;45:31-42.
  18. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88-90. https://doi.org/10.1016/0006-2952(61)90145-9
  19. Kang MG, Yoon MH, Choi YJ, Lee JS. Isolation, identification and characterization of a antidementia acetylcholinesterase inhibitor-producing Yarrowia lipolytica S-3. Mycobiology 2012;40:42-6. https://doi.org/10.5941/MYCO.2012.40.1.042
  20. Kim DY, Bae SM, Han SM, Lee JS. Screening of potent anti-dementia acetylcholinesterase inhibitor-containing edible mushroom Pholiota adiposa and the optimal extraction conditions for the acetylcholinesterase inhibitor. Kor J Mycol 2016;44:314-7.
  21. Lee EN, Song JH, Lee JS. Screening of a potent antidementia acetylcholinesterase inhibitorcontaining fruits and optimal extraction conditions. Korean J Food Nutr 2010;23:318-23.
  22. Jeong SC, Lee DH, Lee JS. Production and characterization of an anti-angiogenic agent from Saccharomyces cerevisiae K-7. J Microbiol Biotechnol 2006;16:1904-11.
  23. Kim JH, Lee DH, Jeong SC, Chung KS, Lee JS. Characterization of antihypertensive angiotensin 1-converting enzyme inhibitor from Saccharomyces cerevisiae . J Microbiol Biotechnol 2004;14:1318-23.
  24. Lee DH, Lee DH, Lee JS. Characterization of a new antidementia-secretase inhibitory peptide from Saccharomyces cerevisiae. Enzyme Microb Technol 2007;42:83-8. https://doi.org/10.1016/j.enzmictec.2007.08.003
  25. Sabel A, Martens S, Petri A, Konig H, Claus H. Wickerhamomyces anomalus AS1: a new strain with potential to improve wine aroma. Ann Microbiol 2014;64:483-91. https://doi.org/10.1007/s13213-013-0678-x