DOI QR코드

DOI QR Code

Accurate determination of minor isotope ratios in individual plutonium-uranium mixed particles by thermal ionization mass spectrometry

  • Lee, Chi-Gyu (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Jinkyu (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Lim, Sang Ho (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
  • 투고 : 2017.02.14
  • 심사 : 2017.10.29
  • 발행 : 2018.02.25

초록

Isotopic analyses of plutonium and low-enriched uranium mixtures with particle sizes of $0.6-3.3{\mu}m$ were performed using thermal ionization mass spectrometry with a continuous heating method to verify its effectiveness for the accurate analysis of minor isotopes without sample pretreatment. The mixed particles used in this study were prepared from a mixed solution of plutonium (SRM 947) and uranium (U010, $^{235}U$ 1% enriched) reference materials. The isotope ratios for plutonium in the individual mixed particles, including $^{238}Pu/^{239}Pu$, $^{241}Pu/^{239}Pu$ as well as $^{240}Pu/^{239}Pu$, and $^{242}Pu/^{239}Pu$, were in good agreement with the certified values despite the isobaric interference of $^{238}U$ and $^{241}Am$. The isotope ratios for uranium in the mixed particles also agreed well with the certified values within the range of error. However, the isotope ratios for minor isotopes, such as $^{234}U$ and $^{236}U$, in the particles with diameters of less than approximately $1.8{\mu}m$ could not be measured because numbers of $^{234}U$ and $^{236}U$ atoms in analyzed particles are too low. These results indicate that thermal ionization mass spectrometry with a continuous heating method is applicable for the analysis of trace amounts of plutonium isotopes, including $^{238}Pu$ and $^{241}Pu$, despite the presence of the respective isobars $^{238}U$ and $^{241}Am$ in the microsamples.

키워드

참고문헌

  1. D. Donohue, Strengthening IAEA safeguards through environmental sampling and analysis, J. Alloy. Compd. 271-273 (1998) 11-18. https://doi.org/10.1016/S0925-8388(98)00015-2
  2. J.N. Cooley, E. Kuhn, D. Donohue, Proceeding of IAEA symposium on International Safeguards, IAEA-SM- 351/182.
  3. D.J. Rokop, D.W. Efurd, T.M. Benjamin, J.H. Cappis, J.W. Chamberlin, H. Poths, F.R. Roensch, Isotope signatures: an important tool in today's world, J. R. Soc. West. Aust. 79 (1996) 85-90.
  4. K. Mayer, M. Wallenius, I. Ray, Nuclear forensics - a methodology providing clues on the origin of illicitly trafficked nuclear materials, Analyst 130 (2005) 433-441. https://doi.org/10.1039/B412922A
  5. M. Wallenius, K. Mayer, Age determination of plutonium material in nuclear forensics by thermal ionization mass spectrometry, Fresenius J. Anal. Chem. 366 (2000) 234-238. https://doi.org/10.1007/s002160050046
  6. Combating Illicit Trafficking in Nuclear and other Radioactive Material, IAEA nuclear Security No. 6, IAEA December 2007 SRI/PUB/1309.
  7. D. Alamelu, S.K. Aggrawal, Isotope correlations for determining the isotopic composition of plutonium, Radiochim. Acta 89 (2001) 131-134.
  8. E.L. Callis, R.M. Abernathy, High-precision isotopic analyses of uranium and plutonium by total sample volatilization and signal integration, Int. J. Mass Spectrom. 103 (1991) 93-105. https://doi.org/10.1016/0168-1176(91)80081-W
  9. R. Fiedler, Total evaporation measurements; experience with multi-collector instruments and a thermal ionization quadrupole mass spectrometer, Int. J. Mass Spectrom 146/147 (1995) 91-97. https://doi.org/10.1016/0168-1176(95)04197-S
  10. S. Richter, H. Kuhn, Y. Aregbe, M. Hedberg, J. Horta-Domench, K. Mayer, E. Zuleger, S. Burger, S. Boulyga, A. Kopf, J. Poths, K. Mathew, Improvements in routine uranium isotope ratio measurements using the modified total evaporation method for multi-collector thermal ionization mass spectrometry, J. Anal. Spectrom. 26 (2011) 550-564. https://doi.org/10.1039/C0JA00173B
  11. D. Suzuki, Y. Saito-Kokubu, S. Sakurai, C.G. Lee, M. Magara, K. Iguchi, T. Kimura, A new method for isotope ratio measurement of uranium in trace amount by thermal ionization mass spectrometry, Int. J. Mass Spectrom. 294 (2010) 23-27. https://doi.org/10.1016/j.ijms.2010.04.007
  12. R. Jakopic, S. Richter, H. Kuhn, Y. Aregbe, Determination of $^{240}Pu$/$^{239}Pu$, $^{241}Pu$/$^{239}Pu$ and $^{242}Pu$/$^{239}Pu$isotope ratios in environmental reference materials and samples from chernobyl by thermal ionization mass spectrometry (TIMS) and filament carburization, J. Anal. Spectrom. 25 (2010) 815-821. https://doi.org/10.1039/b925918j
  13. T. Shinonaga, F. Esaka, M. Magara, D. Klose, D. Donohue, Isotopic analysis of single uranium and plutonium particles by chemical treatment and mass spectrometry, Spectrochim. Acta B 63 (2008) 1324-1328. https://doi.org/10.1016/j.sab.2008.09.001
  14. Y. Saito-Kokubu, D. Suzuki, C.G. Lee, M. Magara, J. Inagawa, T. Kimura, Application of a continuous heating method using thermal ionization mass spectrometry to measure isotope ratios of plutonium and uranium in trace amounts of uranium - plutonium mixture sample, Int. J. Mass Spectrom. 310 (2012) 52-56. https://doi.org/10.1016/j.ijms.2011.11.008
  15. C.G. Lee, D. Suzuki, Y. Saito-Kokubu, F. Esaka, M. Magara, T. Kimura, Simultaneous determination of plutonium and uranium isotope ratios in individual plutonium - uranium mixed particles by thermal ionization mass spectrometry, Int. J. Mass Spectrom. 314 (2012) 57-62. https://doi.org/10.1016/j.ijms.2012.02.006
  16. S.K. Aggarwal, D. Alamelu, A novel approach for the determination of $^{238}Pu$ by thermal ionization mass spectrometry (TIMS) using interfering element correction methodology, Int. J. Mass Spectrom. 241 (2005) 83-88. https://doi.org/10.1016/j.ijms.2004.10.016
  17. D. Suzuki, F. Esaka, Y.Miyamoto,M.Magara, Direct isotope ratio analysis of individual uranium - plutonium mixed particles with various U/Pu ratios by thermal ionization mass spectrometry, Appl. Radiat. Isot. 96 (2015) 52-56. https://doi.org/10.1016/j.apradiso.2014.11.012

피인용 문헌

  1. Atomic spectrometry update: review of advances in the analysis of metals, chemicals and materials vol.33, pp.11, 2018, https://doi.org/10.1039/c8ja90039f
  2. Atomic spectrometry update: review of advances in atomic spectrometry and related techniques vol.34, pp.5, 2018, https://doi.org/10.1039/c9ja90018g
  3. U-Pu Mixed Oxide Particle Analysis by NAUTILUS and Implications for Next-Generation Verification Challenges vol.31, pp.8, 2020, https://doi.org/10.1021/jasms.0c00097
  4. Simultaneous Isotopic Analysis of U, Pu, and Am in Spent Nuclear Fuel by Resonance Ionization Mass Spectrometry vol.93, pp.27, 2018, https://doi.org/10.1021/acs.analchem.1c01360