• Title/Summary/Keyword: TIMS

Search Result 92, Processing Time 0.026 seconds

Complete Simultaneous Analysis of Uranium Isotopes in NUSIMEP-7 Microparticles Using SEM-TIMS

  • Park, Jong-Ho;Jeong, Kahee
    • Mass Spectrometry Letters
    • /
    • v.7 no.3
    • /
    • pp.64-68
    • /
    • 2016
  • Scanning electron microscopy combined with thermal ionization mass spectrometry (SEM-TIMS) was used to determine the precise isotope ratios of ultra-trace levels of uranium contained in individual microparticles. An advanced multiple ion counter system consisting of three secondary ion multipliers and two compact discrete dynodes was used for complete simultaneous ion detection. For verification purposes, using TIMS with complete simultaneous measurement, isotopes were analyzed in 5 pg of uranium of a certified reference material. A microprobe in the SEM was used to transfer individual particles from a NUSIMEP-7 sample to TIMS filaments, which were then subjected to SEM-TIMS and complete simultaneous measurement. The excellent agreement in the resulting uranium isotope ratios with the certified NUSIMEP-7 values shows the validity of SEM-TIMS with complete simultaneous measurement for the analysis of uranium isotopes in individual particles. Further experimental study required for investigation of simultaneous measurement using the advanced multiple ion counter system is presented.

Jackknifed Cochran-Mantel-Haenszel Test for Conditional Independence in Sparse $2\tims2\tims$K Tables

  • Jeong, Kwang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.51-63
    • /
    • 2001
  • We are interested in the conditional independence in sparse $2\tims2\tims$K tables with very rare cell counts. The most popular test is Cochran-Mantel-Haenszel statistic when sample sizes are moderately large enough to guarantee the chi-square approximation. We will consider jackknifing the CMH test and also suggest an approximate normal distribution for the standardized jackknifed CMH statistic. The main focus of this paper is to improve the chi-squared approximation to the CMH test by using the asymptotic normality of the jackknifed CMH test when sample sizes are very sparse but K and N$\infty$. The performance of the proposed jackknifed test, in the sense of significance level control and power, will be compared with that of the CMH test through a Monte Carlo study.

  • PDF

Uranium Enrichment Comparison of UO2 Pellet with Alpha Spectrometry and TIMS

  • Song, Ji-Yeon;Seo, Hana;Kim, Sung-Hwan;Choi, Jung-Youn
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.120-123
    • /
    • 2018
  • Background: Analysis of enrichment of $UO_2$ is important to verify the information declared by the license-holders. The redundancy methods are required to guarantee the analysis result. Korea Institute of Nuclear Nonproliferation and Control (KINAC) used to analyze it with alpha spectrometry and consign to Korea Basic Science Institute (KBSI) Thermal Ionization Mass Spectrometry (TIMS). This article evaluated the similarity of the results with two methods and derive correlation equation. It could be compared to the results measured by TIMS running by KBSI. Materials and Methods: There are not many certified materials for the uranium enrichment value. Therefore, 34 uranium pellets, which have the wide range of uranium enrichment from 0.21 to 4.69 wt%, were used for the experiments by the alpha spectrometry and the TIMS. Results and Discussion: The study shows there are the tendency of analyzed enrichment by each equipment. It shows uranium enrichment with alpha spectrometry evaluated 17% higher than that with TIMS on average. The regression equations were also derived in case the similarity between the two results with two methods is lower than predicted. Two experiments were designed to compare the effect of number of samples. The $R^2$ was 0.9977 with 34 pellets. It shows the equation is appropriate to predict the enrichment values by TIMS with that of alpha spectrometry. The $R^2$ was 0.9858 with four pellets for ten times. The $R^2$ decreased while the number of samples increased. The discrepancy between the lowest and highest enrichment seems to be one of the reason for it. Conclusion: KINAC expects the first equation with 34 samples is useful to predict the result with TIMS, the redundancy method, based on the alpha spectrometry. The extra samples are necessary to collect if the enrichment value analyzed by TIMS is lower than the value predicted with the equation. Further study would be followed related to the impact of the peak counts for each uranium isotopes, sample amount and number of experiments when TIMS established in KINAC by the end of 2018.

Determination of the Uranium Backgrounds in Lexan Films for Single Particle Analysis using FT-TIMS technique

  • Park, Su-Jin;Park, Jong-Ho;Lee, Myung-Ho;Song, Kyu-Seok
    • Mass Spectrometry Letters
    • /
    • v.2 no.2
    • /
    • pp.57-60
    • /
    • 2011
  • As background significantly affects measurement accuracy and a detection limit in determination of the trace amounts of uranium, it is necessary to determine the impurities in the Lexan detector film for single particle measurements by thermal ionization mass spectrometry coupled with fission track technique (FT-TIMS). We have prepared various micro sizes of the blank Lexan detector film using a micromanipulation technique for uranium measurements by TIMS. Few tens of fg of uranium background with no remarkable dependency on the film sizes were observed in the blank Lexan films with the sizes from $50{\times}50\;{\mu}m^2$ to $300{\times}300\;{\mu}m^2$. Based on the determination of the uranium background in the Lexan film, any background correction is necessary in the isotopic analysis of a uranium single particle with micron sizes when the particle bearing Lexan film is dissected with less than $300{\times}300\;{\mu}m^2$ size. The isotopic analysis of a uranium particle in U030 standard material using TIMS was carried out to verify the applicability of the Lexan film to the single particle analysis with high accuracy and precision.

Feasibility of Using Graphite Powder to Enhance Uranium Ion Intensity in Thermal Ionization Mass Spectrometry (TIMS)

  • Park, Jong-Ho
    • Mass Spectrometry Letters
    • /
    • v.7 no.4
    • /
    • pp.102-105
    • /
    • 2016
  • This study explored the feasibility of using a carburization technique to enhance the ion intensity of isotopic analysis of ultra-trace levels of uranium using thermal ionization mass spectrometry (TIMS). Prior to fixing uranium samples on TIMS filaments, graphite powder suspended in nitric acid was deposited on rhenium filaments. We observed an enhancement of $^{238}U^+$ intensity by a factor of two when carburization was used, and were able to roughly optimize the amount of graphite powder necessary for carburization. The positive shift in heating current when evaporating filaments upon carburization implies that uranium was chemically altered by carburization, when compared to normal fixation processes. The good agreement between our method and known standards down to an ultra-trace level shows that the proposed technique can be applied to isotopic uranium analysis down to abundances of ~10 pg.

Determination of the Concentration and Isotope Ratio of Uranium in Soil and Water by Thermal Ionization Mass Spectrometry

  • Park, Jong-Ho;Park, Sujin;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • v.5 no.1
    • /
    • pp.12-15
    • /
    • 2014
  • Thermal ionization mass spectrometry (TIMS) was used to determine the concentration and isotope ratio of uranium contained in samples of soil and groundwater collected from Korea. Quantification of uranium in ground water samples was performed by isotope dilution mass spectrometry. A series of chemical treatment processes, including chemical separation using extraction chromatography, was applied to the soil samples to extract the uranium. No treatments other than filtration were applied to the groundwater samples. Isotopic analyses by TIMS showed that the isotope ratios of uranium in both the soil and water samples were indistinguishable from those of naturally abundant uranium. The concentration of uranium in the groundwater samples was within the U.S. acceptable standards for drinking water. These results demonstrate the utility of TIMS for monitoring uranium in environmental samples with high analytical reliability.

Isotopic Analysis of NUSIMEP-6 Uranium Particles using SEM-TIMS

  • Park, Jong-Ho;Park, Sujin;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • v.4 no.3
    • /
    • pp.51-54
    • /
    • 2013
  • Isotopic analysis using thermal ionization mass spectrometry coupled with scanning electron microscopy (SEM-TIMS) was performed to determine the isotopic ratios of uranium contained in micro-particles in the 6th Nuclear Signatures Interlaboratory Measurement Evaluation Programme (NUSIMEP-6) sample. Elemental analysis by energy dispersive X-ray spectroscopy (EDS) was conducted on uranium-bearing mirco-particles, which were transferred to rhenium filaments for TIMS loading using a micromanipulation system in a SEM. A multi-ion-counter system was utilized to detect the ion signals of the four isotopes of uranium simultaneously. The isotope ratios of uranium corrected by bracketing using a reference material showed excellent agreement with the certified values. The measurement accuracy for $n(^{234}U)/n(^{238}U)$ and (b) $n(^{235}U)/n(^{238}U)$ was 10% and 1%, respectively, which met the requirements for qalification for the NetWork of Analytical Laboratories (NWAL).

The "TIMS" for In-house Information Management System (사내 정보관리시스템 "TIMS")

  • Kim, Jae-Soo;Kwon, Yee-Nam
    • Journal of Information Management
    • /
    • v.30 no.3
    • /
    • pp.55-72
    • /
    • 1999
  • It is purposed to give an explanation of the constitution, major distinction and providing function of TIMS(Technology Information Management System) developed by KINITI(Korea INstitute of Industry and Technology Information). And, it is intended to help companies to manage information effectively by providing the model of information management of company.

  • PDF

A Technique to Minimize Impurity Signal from Blank Rhenium Filaments for Highly Accurate TIMS Measurements of Uranium in Ultra-Trace Levels

  • Park, Jong-Ho;Choi, In-Hee;Song, Kyu-Seok
    • Mass Spectrometry Letters
    • /
    • v.1 no.1
    • /
    • pp.17-20
    • /
    • 2010
  • As background significantly affects measurement accuracy and a detection limit in determination of the trace amounts of uranium, it is necessary to minimize the impurities in the filaments used for thermal ionization mass spectrometry (TIMS). We have varied the degassing condition such as the heating currents and duration times to reduce the backgrounds from the filaments prepared with zone-refined rhenium tape. The most efficient degassing condition of the heating current and the duration time was determined as 3.5 A and 60 min, respectively. The TIMS measurement combined with the isotope dilution mass spectrometry (IDMS) technique showed that the uranium backgrounds were determined to be in a few fg level from blank rhenium filaments. The background minimized filaments were utilized to measure the uranium isotope ratios of a U030 (NIST) standard sample. The excellent agreement of the measurement with the certified isotope ratios showed that the degassing procedure optimized in this study efficiently reduced the impurity signals of uranium from blank rhenium filaments to a negligible level.

Rapid and Precise Determination of Pb Isotope Ratios Using Mu1ti-Collector ICP/MS (다검출기 유도결합 플라즈마 질량분석기를 이용한 신속하고 정밀한 Pb 동위원소 분석)

  • 최만식;정창식;신형선;임태선
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.157-171
    • /
    • 2001
  • This study investigated the effects of Pb/Tl ratio, Pb concentration and concomitant matrix elements on the measurement of Pb isotope ratios using multi-collector ICP/MS (AXIOM MC model). Accuracy and reproducibility of Pb isotope ratios in NBS 981 solution were estimated for 42 data measured from March to August 2001. Pb isotopes measured in rocks, bronzes and sediments were compared to data measured by TIMS. Reproducibilities for $^{206}Pb/^{204}Pb,\; ^{207}Pb/^{204}Pb,\;and\;^{208}Pb/^{204}Pb$ ratio were about 500 ppm (2sd) and for $^{207}Pb/^{206}Pb$\;and\;^{208}Pb/^{206}Pb$ were 100~200 ppm for 200 ng of Pb in NBS 981 solution. The optimum conditions for the analysis of Pb isotope ratios with AXIOM MC for best accuracy and reproducibility were defined as follows; 1) Pb/Tl ratio is about 10 2) Pb concentration is about 100 ng/ml 3) correction for mass discrimination is performed by exponential law using 2.3887 of $^{205}Tl/^{203}Tl$ and Pb mass fractionation factor empirically obtained from $ln(^{208}Pb/^{206}Pb)-ln(^{205}Tl/^{203}Tl)$ relationship. The sample data measured with MC/ICP/MS for acid-digested and chemically separated rock samples, and acid-digested bronze samples and sediment samples coincide with those of TIMS within analytical errors. Therefore, MC/ICP/MS is a rapid analytical technique for Pb isotope ratios with the similar precision compared with TIMS.

  • PDF