DOI QR코드

DOI QR Code

Experimental study on heating performance characteristics of electric heat pump system using stack coolant in a fuel cell electric vehicle

연료전지 스택 폐열 활용 전동식 히트펌프 시스템 난방 성능 특성 연구

  • Lee, Ho-Seong (Thermal Management System Research Center, KATECH) ;
  • Kim, Jung-Il (Technical sales dept., CEDIC) ;
  • Won, Hun-Joo (Motor R&D Center, Dong Ah Electric Equipment Co. Ltd) ;
  • Lee, Moo-Yeon (Department of Mechanical Engineering, Dong-A University)
  • 이호성 (자동차 부품 연구원 열제어시스템 연구센터) ;
  • 김정일 (세딕 주식회사) ;
  • 원헌주 (동아전장 주식회사) ;
  • 이무연 (동아대학교 기계공학과)
  • Received : 2018.10.26
  • Accepted : 2018.12.07
  • Published : 2018.12.31

Abstract

The objective of this study was to investigate heating performance characteristics of electric heat pump system in a fuel cell electric vehicle (FCEV). In order to analyze heating performance characteristics of electric heat pump system with plate-type heat exchanger using stack coolant to evaporate the refrigerant, R-134a, each component was installed and tested under various operating conditions, such as air inlet temperature of inner condenser and compressor speed. When the air inlet temperature of inner condenser was varied from $0.0^{\circ}C$ to $-20.0^{\circ}C$, heating capacity was not quite different due to similar temperature gap between inlet and outlet of inner condenser with electric-driven expansion valve (EEV). However, COP increased until certain EEV opening, especially under 45.0%, because of decreasing power consumption. According to the compressor speed variation from 2,000 to 4,000 RPM, heating capacity and COP were found to have opposite trend. In the future works, stack coolant conditions as the heat source for tested heat pump system were analyzed with respect to heating performance, such as heating capacity and COP.

본 연구의 목적은 수소연료전지 자동차의 난방부하 대응을 위한 스택 냉각수를 활용하여서, 전동식 히트펌프 시스템에 대한 난방성능 특성을 다양한 운전조건 변화에 대해서 고찰하는 것이다. 냉각수와 냉매(R-134a)와의 열교환을 위해서 판형열교환기를 적용하였고, 전동식 히트펌프 시스템에 적용되는 실내열교환기 입구의 공기온도와 압축기 회전수를 변화시키면서 난방 성능 특성을 분석하였다. 실내열교환기 입구 공기 온도 변화에 대해서 난방 성능은 거의 동일한 결과를 보이고 있는데, 이는 입출구 온도차와 공기 측 밀도의 변화가 균형을 이루었기 때문으로 판단된다. 반면, 히트펌프 시스템 효율(COP)의 경우, 난방 성능은 온도변화에 따라 동일하였지만, 유량 변화로 인하여서, 압축기 소모동력이 감소하였기 때문에, 실내열 교환기 입구 온도가 감소함에 따라서, 시스템 효율은 증가하는 경향을 보이고 있다. 추가적으로, EEV개도가 45%정도까지 열리는 구간에서는, 압축기 소모전력 감소하였기 때문에, 시스템 효율이 증가하였고, 그 이후에는 동일한 시스템 효율을 유지하는 것을 알 수 있었다. 압축기 회전수 변화 시에는 난방성능이 증가하면, 시스템 효율은 감소하는 경향을 보여주고 있다. 이러한 원인은 압축기 회전수 증가에 따른 유량의 증가로 판단된다. 향후, 열원으로 사용하는 냉각수에 대한 운전조건을 변화시켜가면서, 난방성능 특성을 분석하여, 전동식 히트펌프의 난방부하 대응을 위한 제어 방안을 연구하고자 한다.

Keywords

SHGSCZ_2018_v19n12_924_f0001.png 이미지

Fig. 1. Schematic diagram of coolant source heat pump for a fuel cell electric vehicle

SHGSCZ_2018_v19n12_924_f0002.png 이미지

Fig. 2. P-h diagram of heating cycle with stack coolant heat-sourced heat pump

SHGSCZ_2018_v19n12_924_f0003.png 이미지

Fig. 3. Heating performance characteristics with the variation of air inlet temperature of inner condenser (a) Heating capacity (b) Air out temperature of inner condenser (c) Heating COP

SHGSCZ_2018_v19n12_924_f0004.png 이미지

Fig. 4. Heating performance characteristics with the variation of compressor speed (a) Heating capacity (b) Heating COP

Table 1. Specification of tested system components

SHGSCZ_2018_v19n12_924_t0001.png 이미지

Table 2. Tested system test matrix

SHGSCZ_2018_v19n12_924_t0002.png 이미지

Table 3. Test equipment and uncertainty of the experimental parameters

SHGSCZ_2018_v19n12_924_t0003.png 이미지

References

  1. TOSHIHISA KONDO, AKIRA KATAYAMA, HIDEKI SUETAKE, MASATOSHI MORISHITA, "Development of Automotive Air-Conditioning Systems" Mitsubishi Heavy Industries Technical Review, Vol. 48, No. 2, June 2011.
  2. Antonijevic D, Heckt R., "Heat pump supplemental heating system for motor vehicles", Journal of Automobile Engineering, vol. 218, no. 10, pp. 1111-1115, 2004. DOI: https://dx.doi.org/10.1177/095440700421801005
  3. Y. C. Choi, W. S. Lee, M. H. Park, Y. H. Choi, "Heating Performance Evaluations for Development of Heat Pump System on Battery Electric Vehicle", Proc. of KSAE Fall Conference, pp.559-563 , 2011.
  4. H. S. Woo, J. H. Ahn, M. S. Oh, , Y. C. Kim, "Study on the Heating Performance Characteristics of a Heat Pump System Utilizing Air and Waste Heat Source for Electric Vehicles", Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 25, No. 4, pp.180-186, 2013. https://doi.org/10.6110/KJACR.2013.25.4.180
  5. M. Hosoz, M. Direk, "Performance evaluation of an integrated automotive air conditioning and heat pump system", Energy Conversion and Management 47, pp 545-559, 2006. https://doi.org/10.1016/j.enconman.2005.05.004
  6. H. S. Lee, Y. C. Kim, "Experimental study on heating performance characteristics of stack coolant heat-sourced electric driven air conditioning system in a fuel cell electric vehicle", Proc. of KSAE Spring Conference, pp.1249-1254 , 2017.
  7. S. H. Lee, "Analysis on the performance test results of heat pump for the closed cooling water heat recovery on combined thermal power plant", The KSFM Journal of Fluid Machinery, Vol. 19, No. 2, pp 43-48, 2016. DOI: https://dx.doi.org/10.5293/kfma.2016.19.2.043
  8. H. S. Lee, M. Y. Lee, "Steady state and start-up performance characteristics of air source heat pump for cabin heating in an electric passenger vehicle", International Journal of Refrigeration, No. 69, pp. 232-242, 2016 DOI: https://dx.doi.org/10.1016/j.ijrefrig.2016.06.021