DOI QR코드

DOI QR Code

Verification of the Reliability of the Numerical Analysis for the Crash Impact Test of Rotorcraft Fuel Tank

회전익항공기용 연료탱크 충돌충격시험에 대한 수치해석 신뢰성 검증

  • Received : 2018.09.10
  • Accepted : 2018.12.07
  • Published : 2018.12.31

Abstract

The main function of a fuel tank is to store fuel. On the other hand, the structural soundness of the fuel tank is related directly to the survival of the crew in an emergency situation, such as an aircraft crash, and the relevant performance is demonstrated by a crash impact test. Because crash impact tests have a high risk of failure due to the high impact loads, various efforts have been made to minimize the possibility of trial and error in the actual test at the beginning of the design. Numerical analysis performed before the actual test is a part of such efforts. For the results of numerical analysis to be reflected in the design, however, the reliability of numerical analysis needs to be ensured. In this study, the results of numerical analysis and actual test data were compared to ensure the reliability of numerical analysis for the crash impact test of a rotorcraft fuel tank. For the numerical analysis of a crash impact test, LS-DYNA, crash analysis software, was used and the ALE (arbitrary Lagrangian Eulerian) technique was applied as the analysis method. To obtain actual test data, strain gages were installed on the metal fittings of the fuel tank and linked to the data acquisition equipment. The strain and stress of the fuel tank fitting were calculated by numerical analysis. The reliability of the numerical analysis was enhanced by assessing the error between the strain measurement of the upper fitting obtained from an actual fuel tank and the strain calculated from numerical analysis.

항공기용 연료탱크는 평상시에는 연료저장 등의 단순한 기능을 한다. 그러나, 항공기 추락과 같은 긴급 상황에서는 연료탱크 구조건전성은 승무원의 생존과 직결되므로, 관련 성능의 보유 여부를 충돌충격시험을 통해 입증하도록 규정되어 있다. 충돌충격시험은 높은 충격하중으로 실패 위험이 높기 때문에 설계 초기 실물시험에서의 시행착오 가능성을 최소화하기 위한 노력이 진행되어 왔다. 실제 시험 전에 수행하는 수치해석도 그러한 노력의 일환이다. 하지만, 수치해석 결과가 설계에 반영되기 위해서는 수치해석의 신뢰성 확보가 필요하다. 본 연구에서는 회전익항공기 연료탱크의 충돌충격시험 수치해석의 신뢰성 확보를 위해 수치해석 결과와 시험 데이타 간의 비교를 수행하였다. 수치해석은 충돌전용 소프트웨어인 LS-DYNA을 사용하였고, 해석방법은 유체-구조연성해석 방법 중 ALE(arbitary lagrangian eulerian) 방법을 적용하였다. 시험데이터 확보를 위해 연료탱크 금속 피팅부에 변형률게이지를 설치하고 데이터 획득장비와 연동시켰다. 수치해석 결과로써 연료탱크 피팅부의 변형률과 응력을 계산하였다. 그리고, 실물 연료탱크로 수행한 충돌충격시험을 통하여 확보한 상부피팅의 변형률 측정값과 수치해석으로 계산된 변형률과의 오차를 평가함으로써 수치해석의 신뢰성을 제고하였다.

Keywords

SHGSCZ_2018_v19n12_918_f0001.png 이미지

Fig. 1. Finite element model for numerical analysis

SHGSCZ_2018_v19n12_918_f0002.png 이미지

Fig. 2. Setting of internal fluid

SHGSCZ_2018_v19n12_918_f0003.png 이미지

Fig. 3. Internal air and fluid in the fuel tank

SHGSCZ_2018_v19n12_918_f0004.png 이미지

Fig. 4. Behavior of internal fluid in the fuel tank

SHGSCZ_2018_v19n12_918_f0005.png 이미지

Fig. 5. maximum deformation of fuel tank(unit: mm)

SHGSCZ_2018_v19n12_918_f0006.png 이미지

Fig. 6. Maximum equivalent stress by crash impact load (unit: MPa)

SHGSCZ_2018_v19n12_918_f0007.png 이미지

Fig. 7. Strain gaga used in the test

SHGSCZ_2018_v19n12_918_f0008.png 이미지

Fig. 8. Data acquisition equipment(DAQ)

SHGSCZ_2018_v19n12_918_f0009.png 이미지

Fig. 9. Equipments for installation of strain gage

SHGSCZ_2018_v19n12_918_f0010.png 이미지

Fig. 10. Locations of strain gage and sealing

SHGSCZ_2018_v19n12_918_f0011.png 이미지

Fig. 11. Overall configuration of fuel tank with stration gage

SHGSCZ_2018_v19n12_918_f0012.png 이미지

Fig. 12. Location of strain gage (no.1~no.4)

SHGSCZ_2018_v19n12_918_f0013.png 이미지

Fig. 13. Comparison of numerical result and test result (@strain gage no.1)

SHGSCZ_2018_v19n12_918_f0014.png 이미지

Fig. 14. Comparison of numerical result and test result (@strain gage no.2)

SHGSCZ_2018_v19n12_918_f0015.png 이미지

Fig. 15. Comparison of numerical result and test result (@strain gage no.3)

SHGSCZ_2018_v19n12_918_f0016.png 이미지

Fig. 16. Comparison of numerical result and test result (@strain gage no.4)

SHGSCZ_2018_v19n12_918_f0017.png 이미지

Fig. 17 Error between numerical result and test result in each gage (%)

References

  1. Hyun-Gi Kim, Sung Chan Kim, Sung Jun Kim, Soo Yeon Kim, "Numerical Simulation of Full-scale Crash Impact Test for Fuel Cell of Rotorcraft", Journal of Computational Structural Engineering Institute of Korea, vol. 26, no. 5, pp. 343-349, 2013. DOI: https://dx.doi.Org/10.7734/CQSEIK.2013.26.5.343
  2. Hyun-Gi Kim, Sung Chan Kim, "Numerical Simulation of Bullet Impact for Fuel Cell of Rotorcraft", Journal of Computational Structural Engineering Institute of Korea, vol. 27, no. 2, pp. 71-78, 2014. DOI: https://dx.doi.Org/10.7734/CQSEIK.2014.27.2.71
  3. U.S.Army Aviation and Missile Command, "Detail Specification for the Tank, Fuel, Crash-Resistant, Ballistic-Tolerant, Aircraft", MIL-DTL-27422D, 2007
  4. Ministry of Defence, "Flexible Tanks for Use in Aircraft Fuel and Methanol/water System" Defence Standard 15-2/Issue 1, 1987.